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a b s t r a c t

A novel method is proposed for recovering low-rank component and sparsity component of noisy ob-

servations, using a local convex envelope of the matrix cardinality function over a local box. Two local

relaxation models combined with implicit or explicit rank restriction are proposed for solving the rank-

sparsity factorization. An iterative approach of the local relaxation and a post-processing refinement are

also given to further improve the factorization, together with updating rules of the local box. Numerical

examples show the efficiency of the proposed methods in two applications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Low-rank or sparse approximation is a main task in many ap-

plications such as image processing. For example, in photometric

stereo, a sequence of face images of the same person form a ma-

trix A ∈ Rm×n, each column of which is a transformed image. Be-

cause a face image is nearly convex and almost Lambertian [3,9],

if these images are taken under various lighting conditions, A can

be roughly represented as A = L0 + S0 with a low-rank matrix L0

from a clean face image by removing shadows or specularities and

a sparse matrix S0 of the polluted parts. This factorization also oc-

curs in other applications such as video surveillance [15], rigid SFM

[18], nonrigid SFM [5], Gaussian graphical model [14] and matrix

rigidity [20].

In the early work for example [19] and [1], the sparsity com-

ponent is regarded as intra-sample outlier for estimating the low-

rank component by a weighted �2-norm minimization, although

the sparsity component is also meaningful in some applications. In

[6] and [11], the sparsity component is assumed to have an inde-

pendent Laplacian distribution. The factorization is then estimated

by the solution of the �1-minimization with an estimated rank r,

min
S, rank(L)≤r

‖S‖1, s.t. A = L + S, (1)

where ‖S‖1 = ∑
i j |si j| is the �1-norm. Due to the explicit rank-

restriction, this problem is non-convex. In [21], the convex nuclear

norm function ‖X‖∗ of matrix, the sum of all the singular values

of X, is used for penalizing rank or imposing an implicitly rank re-
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striction, yielding a convex problem

min
S,L

‖L‖∗ + μ‖S‖1, s.t. A = L + S (2)

with a suitably set parameter μ > 0. It can be solved cheaply, us-

ing a shrink operator as in [7]. The implicit rank-constrained model

is more suitable for noisy observed data A,

A = L0 + S0 + N0. (3)

Assuming that we have an estimate for the noise matrix N0 as its

Frobenius norm ‖N0‖F ≤ ε, (2) can be extended to

min
S,L

‖L‖∗ + μ‖S‖1, s.t. ‖A − L − S‖F ≤ ε, (4)

as did in [2] and [17].

There are other relaxation approaches for low-rank/sparsity fac-

torization. In [16], a so-called capped-norm is used to relax the

rank function rank(L) and the cardinality function ‖S‖0. In [12,13],

the minimization problems of ‖L − A‖2
F

+ λ rank(L) and ‖L − A‖2
F

+
λ max{r, rank(L)} for low-rank approximation with implicit or ex-

plicit rank-restriction are relaxed by the convex envelopes of the

objective functions. It is a bit similar to [10] in which the objective

‖x‖2
2

+ λ‖x‖0 is relaxed by its local convex envelope over {x: ‖x‖∞
≤ 1}.

In applications like video surveillance, the sparsity component

in the factorization (3) is meaningful. It is known that the �1-

minimization may give inferior results with small entries in the

sparsity component. These undesirable small components can be

reduced much if we look for an S as sparse as possible.

In this paper, we propose a new method for the low-rank-

sparsity factorization (3), focusing on the sparsity component. The

main contribution consists of three parts. First, we propose to use

a local convex envelope of the ideal but non-convex and noncon-

tinuous cardinality function ‖S‖0 over a local box around a center
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Fig. 1. The convex envelope δc(s) of δ(s) in [c − α, c + α] (red lines) and the �1-

function |s| (blue lines), when |c| ≤ α (left) or |c| > α (right). (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article.)

matrix. Combining the local convex envelope on the sparse ma-

trix S with the nuclear norm on the implicit low-rank matrix L or

an explicit low-rank factorization of L, we give two optimization

formulations to compute the factorization. Because the envelope is

closer to ‖S‖0 than ‖S‖1 in the local box if the box size is suitable,

it is expectable to obtain a sparser solution than the �1-model, if

the local box contains the optimum. Second, the local relaxation is

flexible. In practice, it can be also used to improve solutions from

other algorithms if necessary. We give an outer loop to iteratively

improve the location of the local box and improve the solution if

the current local box does contain the optimum. Third, we give

a post-processing refinement to further improve the sparsity of S,

while the implicit low-rank of L is at last preserved.

We will also show some algorithms for solving the proposed

local optimization problems, including convergence analysis.

2. The local convex method

Generally, by searching in a local domain via a local convex en-

velope, one can get a better solution than that via an envelope over

a larger or the whole domain. In this section, we consider a restric-

tion box around a center matrix C = (ci j) with radius α,

B(C, α) =
{

S = (si j) : |si j − ci j| ≤ α,∀(i, j)
}

and the convex envelope of the cardinality function ‖S‖0 =∑
i j δ(si j) over the box, where δ(s) = 1 if s �= 0, and δ(0) = 0. Two

local relaxation formulations will be considered, combining the en-

velope with the nuclear norm for implicit rank-restriction or an

explicit rank factorization, respectively.

2.1. The local convex envelope

The convex envelope of a function f in a closed subdomain is

the largest convex function less than or equal to f. In our case, both

the function ‖S‖0 and the subdomain B(C, α) are separable with

respect to variables {sij}. The convex envelope is then a sum of the

convex envelopes of the δ-function over each interval [ci j − α, ci j +
α] for the single variable sij.

It is easy to verify that the convex envelope of δ-function δ(s)

over [c − α, c + α] is given by δc(s) = |s|
α+sign(s)c

if |c| ≤ α, or δc(s)

≡ 1 if |c| > α. Hence, the convex envelope of ‖S‖0 is

φC,α(S) = kC,α +
∑

|ci j|≤α

|si j|
α + sign(si j)ci j

, S ∈ B(C, α), (5)

where kC, α is the number of |cij|’s larger than α.

As illustrated in Fig. 1, the convex envelope δc(s) is a better ap-

proximation to δ(s) than |s| in the interval [c − α, c + α] if |c| > α
or |c| ≤ α < 1 − |c|. If α is suitably chosen for a given center matrix

C, for example, α = max{|ci j| : |ci j| < 1/2},φC, α(S) should be closer

to ‖S‖0 than ‖S‖1 for any S ∈ B(C, α):

‖S‖1 < φC,α(S) ≤ ‖S‖0, ∀S ∈ B(C, α).

2.2. Local relaxation models

We consider two kinds of local minimizations for the low rank

sparsity factorization, utilizing the convex relaxation φC, α(S) of

‖S‖0 over the box B(C, α). One is that

min
S∈B(C,α),L

φC,α(S) + λ‖L‖∗, s.t. ‖A − L − S‖F ≤ ε, (6)

which implicitly imposes a low-rank restriction on L.

It is known that an iterative method for minimizing a function

with the nuclear norm ‖ · ‖∗ may require to compute singular

value decomposition (SVD) repeatedly. Because an SVD costs much

for matrices in a large scale, such an approach may be only suit-

able for problems in a small scale. In that case, an explicit rank-

restriction model may be a good choice for the problem in a large

scale since no SVDs are required.

Our second formulation adopts an explicit rank-restriction

rank(L) ≤ r, where r is an estimated rank of the optimum L0.

min
S∈B(C,α), rank(L)≤r

φC,α(S), s.t. ‖A − L − S‖F ≤ ε (7)

One may rewrite L as L = HF T with two matrices H and F; each

is of r columns. A further restriction on the factors H and F can

be imposed. For example, one of them is orthonormal, or both are

nonnegative, and so on. However, such a restriction may increase

the complicity in solving.

Different from the implicit rank-restriction model, the mini-

mization problem (7) is no longer convex because of the non-

convexity of the set of low-rank matrices, though the feasible

set S ∈ B(C, α) is convex. However, this problem becomes convex

when H or F is fixed. Hence, (7) can be solved by alternatively min-

imizing the two convex subproblems.

3. The algorithms

We will slightly modify the Alternating Direction Method of

Multipliers (ADMM) [4] for solving (6). Each ADMM iteration can

be implemented simply. The alternative method mentioned above

will be discussed, focusing on analysis of its convergence. A mod-

ified ADMM method will be given for solving the subproblems in-

volved in the alternating iterations, together with its convergence.

3.1. ADMM algorithm for solving (6)

The problem (6) can be equivalently represented as

min
S∈B(C,α),L,‖N‖F ≤ε

φC,α(S) + λ‖L‖∗, s.t. A = L + S + N. (8)

Its augmented Lagrangian function with a dual variable Y is

L(L, S, N,Y ) = φC,α(S) + λ‖L‖∗ + ρ

2
‖A − L − S − N + ρ−1Y‖2

F

with a tunable constant ρ > 0.

The basic iteration of the ADMM method applied on the above

problem consists of four steps. The first three steps minimize L
with one of the primal variables L, S, N over the feasible set, and

the last one modifies the dual variable Y. Below we show the pro-

cedure in details with Â = A + ρ−1Y .

Step 1. Find the nearest neighbor N̂ of WN = Â − L − S in the ε-

ball {Ñ : ‖Ñ‖F ≤ ε}, which gives the solution

N̂ = min
{

1, ε/‖WN‖F

}
WN. (9)

Step 2. Let WS = Â − L − N̂. Update S by the minimizer of

φC,α (S̃) + ρ
2 ‖S̃ − WS‖2

F
over B(C, α). Because the objective is sep-

arable on the entries s̃i j of S̃, the minimizer Ŝ has entries
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