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a b s t r a c t

We consider the low rank matrix recovery (LRM) problem, which recovers an unknown low rank matrix

from very limited information. Although recent study has shown that non-convex models for LRM can

serve as better approximation of low rank regularization and outperform their convex counterpart, these

models suffer from getting trapped into a bad local minimum. We propose an algorithm, named PIC-

LR, to address this problem. PIC-LR is inspired by a recent algorithm, called SparseNet, which addresses

analogical problem in the study of sparse optimization. Specifically, we take advantage of the properties

of MC+ penalty and employ path-following technique. We also generalize coordinate descent to better

imitate SparseNet. In numerical experiment, we apply PIC-LR to matrix completion problem, and the

results show that PIC-LR outperforms several state-of-the-art solvers in terms of precision.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

There is a rapidly growing interest in the low rank matrix

recovery (LRM) problem, which recovers an unknown low rank

matrix from very limited information [7,12,15,20]. One common

formulation of this problem can be given by

min
X

rank(X ), s.t. A(X ) = B, (1)

where the linear map A and the matrix B are known.

The above problem aims to find a matrix of minimum rank that

satisfies a given system of linear equality constraints, which is a

useful idea that can be applied to various applications in pattern

recognition/machine learning, such as matrix completion [15], im-

age processing [24], subspace segmentation [20], collaborative fil-

tering/recommender system [7]. Although (1) is simple in form, it

is a challenging problem due to the discrete nature of the rank

function.

A commonly used heuristic introduced in [3] is replacing the

rank function with the nuclear norm, which is the sum of the sin-

gular values of the matrix. This technique is based on the fact that

the nuclear norm is the tightest convex relaxation of the matrix

rank over the unit ball of matrices. The new formula can be given

by

min
X

||X||∗, s.t. A(X ) = B, (2)
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where ||X||∗ := ∑r
i=1 σi(X ) denotes the nuclear norm. It is well-

known that (2) can be rewritten as follow under some conditions1

min
X

λ||X||∗ + 1

2
||A(X ) − B||2

F , (3)

where λ > 0 is a Lagrange multiplier and || · ||F denotes the Frobe-

nius norm of a matrix.

However, recent literature shows that using convex regularizer

often leads to a biased and sub-optimal solution, and by contrast,

some non-convex regularizers can sometimes serve as better ap-

proximation of low rank regularization and outperform their con-

vex counterpart [11,21]. To take advantage of non-convex regular-

izers, several new regularizers such as the �p-norm and Minimax

Concave Penalty have been proposed [11,22]. These theories and

techniques usually first appear in the study of sparse regularizers,

then generalized to low rank regularizers.

Unfortunately, many of these non-convex solvers often get

trapped into a bad local minimum [13,23]. In this paper, we pro-

pose an algorithm, named PIC-LR, to address this problem. PIC-

LR is inspired by a recent algorithm, called SparseNet, which ad-

dresses analogical problem in the study of sparse optimization. It

has been shown in [13] that SparseNet successfully avoids bad lo-

cal minimum and achieves better precision. It is thus desirable to

1 Recall the Lagrangian relaxation. Usually one use (3) as a more robust estimator,

since the corresponding constraint is ||A(X ) − B||2
F ≤ ε, where ε is a certain noise

level.
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investigate analogical algorithms that applicable to the more gen-

eral LRM problem.

In SparseNet, three crucial techniques are applied: coordinate

descent, path following, and recalibration. Our main contributions

lies in generalizing the first two techniques to our problem setting.

In the first two techniques we applied, coordinate descent is an

old and classical one, and is known as a highly scalable method

[18,19]. The basic idea of coordinate descent method (CDM) is to

partition the variable into disjoint (block) coordinates and handle

a much smaller subproblem instead at each iteration. Applying this

idea usually leads to better convergence rate and less computa-

tional cost [17]. For LRM however, the iterative procedure requires

singular value decomposition (SVD), which is very tricky to per-

form with the detached submatrices of the matrix variable X. This

obstacle indicates that the traditional CDM cannot be directly ap-

plied to LRM. Although several variants of CDM have been pro-

posed for LRM, most of them categorize to greedy techniques and

are not suitable for our framework. Therefore, we propose a new

variants of CDM for PIC-LR, which is more natural and simple, and

makes PIC-LR more analogous to SparseNet.

Another important technique, path following, can be interpreted

as the process of tracing a sequence of solutions when the op-

timization problem is gradually modified from convex to non-

convex. With this technique, we expect to find a good local optimal

solution because such a process can be interpreted as simulated

annealing [6].

Path following over the parameter has been studied in the con-

text of �1-regularized feature selection [8], �1-MKL [1] and boost-

ing [25]. However, it seems to us that this technique is rare in the

study of LRM. To the best of our knowledge, this is the first work

that path following with MC+ penalty is applied to the LRM prob-

lem. The popular competing technique to ours is the non-convex

regularization, and we present comparative results in Section 6.

The remaining paper is organized as follows. In Section 2, we

introduce some preliminaries and notations. In Section 3, we de-

velop a variant of CDM for PIC-LR, and in Section 4 we present the

PIC-LR algorithm. We then give convergence analysis in Section 5.

Numerical results are reported in Section 6.

2. Preliminaries and notation

Block structure. We first introduce the block structure, which

will be used in the development of a variant of CDM. Assume the

variable of LRM problem is a matrix X ∈ R
m×n of rank r, we model

the block structure of the problem by decomposing X into r rank-

one matrices. That is, we decompose X = X1 + X2 + · · · + Xr, with

Xi, i = 1, 2, . . . , r being rank-one matrices. For a given X, we con-

struct a block diagonal matrix

e(X ) =

⎡
⎢⎢⎣

X1

X2

. . .

Xr

⎤
⎥⎥⎦, (4)

where e : R
m×n → R

mr×nr maps a matrix to a block diagonal ma-

trix. It will be assumed throughout the paper that the rank r is

known or can be estimated.

For an iterative method, image that the order of sequence {Xi}

has been fixed since the first decomposition. At each iteration, the

updated value of Xi is stored back into its original variable. This

suggests that Xi plays a similar role as coordinates to CDM. To dis-

tinguish between them, we name Xi a “component”.

We point out that in our method, it is unnecessary to maintain

a huge-size matrix like e(X), as the whole process is on component

level. Besides, we can store each component in the form Xi = uivT
i
,

which dramatically reduces the number of primal variables from

m × n to m + n. However, the above definitions are essential to

understand the relevance between “component” and “coordinate”.

For convenience we define the following operators: ei(X ) :

R
m×n → R

mr×nr is a matrix whose ith component is X and the rest

are zeros, i.e.,

ei(X ) =

⎡
⎢⎣

. . .

X

. . .

⎤
⎥⎦ ∈ R

mr×nr. (5)

P is a projector defined as P(X ) = u1σ1(X )vT
1
, that is, keep the

first singular value and the corresponding singular value vectors of

X and eliminate the rest.

With above definitions, we now can write

e(X ) = e1(X1) + e2(X2) + · · · + er(Xr)

and

P(Xi) = Xi, i = 1, 2, . . . , r.

We will use above notations and definitions throughout the paper.

Smoothness of �. Corresponding to block structure, we define

a new concept “component-wise Lipschitz continuous”, which is

slightly different from that of coordinate-wise Lipschitz continuous

(see, e.g., [10] for the definition of coordinate-wise Lipschitz con-

tinuous), as we operate component instead of coordinates, despite

their analogy. Formally, we have the following definition.

Definition 1. A function � : R
m×n → R

+ is called component-wise

Lipschitz continuous if

||∇�(X + Zi) − ∇�(X )||F ≤ Li||Zi||F (6)

holds for all X ∈ R
m×n and Zi ∈ R

m×n, i = 1, . . . , r satisfying P(Xi +
Zi) = Xi + Zi.

Note that (6) is also different from the conventional definition

of Lipschitz continuity

||∇�(X + Z) − ∇�(X )||F ≤ L||Z||F, (7)

since Li is a single-“component” derivatives of �. That is, from the

perspective of block structure, X + Zi and X agree in all compo-

nents except the ith component. Besides, (6) has an extra condition

P(Xi + Zi) = Xi + Zi. This suggests Li ≤ L.

An important consequence of (6) is the following standard in-

equality (see, e.g., Lemma 1.2.3 in [16]):

�(X + Zi) ≤ �(X ) + 〈∇�(X ), Zi〉 + Li

2
||Zi||2

F , (8)

The above inequality can be deduced from (6) with Taylor’s theo-

rem.

Note that throughout the rest of this paper, we always have

�(X ) = 1
2 ||A(X ) − B||2

F
, which clearly is component-wise Lipschitz

continuous.

3. Component descent method with MC+ penalty

As mentioned in Section 1, non-convex models for LRM are

popular in recent literature. A general formula for these models

can be given by

min
X∈Rm×n

f (X ) = �(X ) + λ
r∑

i=1

P(σi(X )). (9)

where σ i(X) is the ith singular value of block X,
∑r

i=1 P(σi(X )) is

a non-convex penalty that tend to encourage the low rank struc-

ture of the solution, and λ ∈ R
+ balance the effects of loss � and

penalty.

We will start with our new formula and its continuous prop-

erties, then develop a fixed parameter method for solving the for-

mula. The fixed parameter method serves as a core step in PIC-LR

presented in next section.
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