
Pattern Recognition Letters 71 (2016) 66–72

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Automated checkerboard detection and indexing using circular

boundaries✩

Yunsu Bok a, Hyowon Ha b,∗, In So Kweon b

a Division of Future Vehicle, KAIST, Daejeon 34141, Republic of Korea
b Department of Electrical Engineering, KAIST, Daejeon 34141, Republic of Korea

a r t i c l e i n f o

Article history:

Received 3 July 2015

Available online 30 December 2015

Keywords:

Checkerboard detection

Camera calibration

Corner indexing

Partial view

a b s t r a c t

This paper presents a new algorithm for automated checkerboard detection and indexing. Automated

checkerboard detection is essential for reducing user inputs in any camera calibration process. We adopt

an iterative refinement algorithm to extract corner candidates. In order to utilize the characteristics of

checkerboard corners, we extract a circular boundary from each candidate and find its sign-changing

indices. We initialize an arbitrary point and its neighboring two points as seeds and assign world coordi-

nates to the other points. The largest set of world-coordinate-assigned points is selected as the detected

checkerboard. The performance of the proposed algorithm is evaluated using images with various sizes

and particular conditions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Camera calibration is an essential process for various purposes

in the areas of computer vision and robotics. It determines the re-

lation (one-to-one correspondence) between pixels of images cap-

tured by a camera and ray directions in the camera coordinate

system. In other words, the (geometric) camera calibration is the

process of decoding the physical meaning of pixels. Specifically, it

calculates intrinsic and extrinsic parameters of the cameras’ pro-

jection model. Most cameras are assumed to follow the character-

istics of the pinhole projection model. A large number of studies of

camera calibration under the pinhole model have been published

[8,16,18,20]. The method proposed by Zhang [20] is most popular

because of its efficiency and robustness.

Most camera calibration methods require a sufficient number

of correspondences between world coordinates and image coordi-

nates, which are also known as control points. They utilize images

of two- or three-dimensional objects with known geometries. The

objects contain patterns on their surfaces, such as checkerboard

patterns or circular patterns, which are used to extract fea-

tures with high accuracy. Most researchers use two-dimensional

checkerboard patterns. Assuming that the size of a checkerboard

pattern is known, the world-image correspondences can be cal-

✩ This paper has been recommended for acceptance by Dr. A. Koleshnikov.
∗ Corresponding author. Tel.: +82 423505465.

E-mail addresses: ysbok@rcv.kaist.ac.kr (Y. Bok), hwha@rcv.kaist.ac.kr (H. Ha),

iskweon@kaist.ac.kr (I.S. Kweon).

culated by accurately extracting the corners of the patterns in

images using various techniques.

This paper focuses on the ‘automatic’ extraction of pattern fea-

tures from images. In the whole process of camera calibration,

the only remaining part that requires user input is feature de-

tection and indexing. Recently, many researchers have started to

use a toolbox implemented in MATLAB [1], which requires four

points that indicate a checkerboard area with a known number of

squares. Moreover, images that contain only a part of the pattern

must be discarded. Other open sources work in a similar way.

A number of studies related to automated checkerboard

detection have been published. Yu and Peng [19] inserted double-

triangle figures in a checkerboard pattern and detected them

as a reference. The performance of their method depends on

the success ratio of detecting the double-triangle figures. Wang

et al. [17] extracted Harris corners [7] and convolved rotating

orthogonal masks. Their method may fail in extremely slanted

poses and severe radial distortion. Rufli et al. [13] binarized images

using an adaptive threshold and detected quadrangles (four-sided

polygons). Their method sometimes misses several quadrangles.

Fiala and Shu [4] adopted two-dimensional binary markers to

assign world coordinates automatically. The indexing ability of this

method is good, but its localization accuracy is questionable. De

la Escalera and Armingol [3] applied a Hough transform to Harris

corners to detect the edge lines of a checkerboard. Geiger et al. [6]

computed the corner likelihood of each pixel by comparing two

types of corner prototypes; they expanded the seed points into the

directions of strong gradients. This algorithm works well even with

http://dx.doi.org/10.1016/j.patrec.2015.12.008

0167-8655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.patrec.2015.12.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.12.008&domain=pdf
mailto:ysbok@rcv.kaist.ac.kr
mailto:hwha@rcv.kaist.ac.kr
mailto:iskweon@kaist.ac.kr
http://dx.doi.org/10.1016/j.patrec.2015.12.008


Y. Bok et al. / Pattern Recognition Letters 71 (2016) 66–72 67

large distortion, but it can perform detection only if whole views

of the checkerboards are included in the images, not partial views.

Placht et al. [11] detected corners by extracting edges using Scharr

kernels and checking the connections of the edges’ skeletons. The

success ratio of this method depends on the edge detection results

obtained using the Scharr kernel. Recently, OpenCV also provided

a function that detects checkerboard corners automatically. Most

of the related works mentioned above have certain weaknesses,

such as radial distortion or partial views of the checkerboard. Even

recent works [6,11] fail for certain extreme views.

In this paper, we present a simple and efficient algorithm for

automated checkerboard detection and indexing. Instead of corner

detectors such as Harris corner [7], KLT [15] or FAST [12], we apply

an iterative refinement algorithm to the entire region of images to

find the candidates of checkerboard corners without loss. We then

extract the circular boundary of every candidate and discard out-

liers using the characteristics of checkerboard corners. A checker-

board is detected automatically using the results of the automated

indexing algorithm. The performance of the proposed algorithm is

evaluated using images with various sizes. Because the main objec-

tive of the proposed algorithm is automated detection and index-

ing, the accuracy of the detected corners is limited to that of the

iterative refinement algorithm. However, this method may be used

to determine the initial locations of other refinement algorithms

[2,9,10].

2. Checkerboard corner extraction

2.1. Corner search by iterative refinement

Checkerboard corners can be detected using conventional algo-

rithms, such as Harris corner [7] or KLT [15]. However, these algo-

rithms usually extract multiple points from one corner or miss a

number of corners due to user-defined parameters. Instead of ex-

tracting feature points, we adopt an iterative refinement algorithm

that makes arbitrary points converge into nearby corners.

We adopt the sub-pixel corner finder algorithm implemented

in [1]; this algorithm is based on Harris corner [7]. From the given

initial corner locations, the algorithm iteratively updates the indi-

vidual corner locations to the largest gradient values using patch-

based structure tensor calculation. Let G
(i, j)
x and G

(i, j)
y be the im-

age gradients at the location (i, j) along the x- and y-directions,

respectively. The updated corner location (i + �i, j + � j) can be

computed as follows:

e(�i,� j) ≡ I(i + �i, j + � j) − I(i, j) ≈ G(i, j)
x �x + G(i, j)

y � j (1)

E(�i,� j) =
∑

i

∑
j

w(i, j)e(�i,� j)2

≈
∑

i

∑
j

w(i, j)(G(i, j)
x �i + G(i, j)

y � j)2 (2)

[
i + �i
j + � j

]

=
[∑

i

∑
j w(i, j)G(i, j)

x G(i, j)
x

∑
i

∑
j w(i, j)G(i, j)

x G(i, j)
y∑

i

∑
j w(i, j)G(i, j)

x G(i, j)
y

∑
i

∑
j w(i, j)G(i, j)

y G(i, j)
y

]−1

×
(∑

i

∑
j

[
w(i, j)G(i, j)

x G(i, j)
x · i + w(i, j)G(i, j)

x G(i, j)
y · j

w(i, j)G(i, j)
x G(i, j)

y · i + w(i, j)G(i, j)
y G(i, j)

y · j

])
, (3)

where w(i, j) is the weight of the location (i, j), which is defined as

the Gaussian weight.

However, when the number of corners is large, the structure

tensor calculation becomes the bottleneck of this process due to

many gradient calculations that are required for every sampled

Fig. 1. Examples of inappropriate window sizes. (a) Extraction results for a small

pattern using the window size of 17 × 17 pixels. (b) Extraction results for a blurred

corner using the window size of 5 × 5 pixels (inside the green box). (For interpre-

tation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

(a) (b)

Fig. 2. (a) Example of circular boundaries with 10-degree intervals. The green dots

compose the circular boundary of the corner depicted by the red dot. They are

reshaped into a 1 × n vector in clockwise order, starting from the pixel at the

right center (green dot with red boundary). (b) The characteristics of the circular

boundary (green dots). This boundary has four sign-changing indices (dots with red

boundaries). The differences (black arrows) between the opposite sign-changing in-

dices are similar to the half-length of the boundary vector. This boundary vector’s

sign-changing indices are similar to those of a boundary vector with a smaller ra-

dius (blue dots). (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

patch. We modify this algorithm to calculate the structure tensor

by directly interpolating the gradients instead of first interpolating

the image and second computing the gradients. This modification

reduces the computational burden ten times; the results, however,

are mathematically identical.

The performance of the iterative refinement algorithm depends

on the window size. A small pattern cannot be detected using a

large window, and a blurred pattern cannot be detected using a

small window, as shown in Fig. 1. Because we do not know the

proper window size for an arbitrary target image, we extract cor-

ner candidates using a number of different window sizes. Dupli-

cated candidates extracted from an identical corner using different

window sizes are discarded, as detailed in Section 2.2.

2.2. Discarding candidates using circular boundary

The key idea of the proposed algorithm is to utilize the circu-

lar boundaries – the list of pixels with the same distances – of

checkerboard corners. As shown in Fig. 2(a), we extract n pixels

of a circular boundary centered at the corner candidate. Because

the locations of the boundary pixels are computed at a sub-pixel

level, the pixel intensities are computed using the bilinear interpo-

lation. After computing the intensities, the pixels are reshaped into



Download English Version:

https://daneshyari.com/en/article/533948

Download Persian Version:

https://daneshyari.com/article/533948

Daneshyari.com

https://daneshyari.com/en/article/533948
https://daneshyari.com/article/533948
https://daneshyari.com

