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We present a histogram-based image retrieval method which is designed specifically for noisy query images.

The images are retrieved according to histogram similarity. To reach high robustness to noise, the histograms

are described by newly proposed features which are insensitive to a Gaussian additive noise in the original

images. The advantage of the new method is proved theoretically and demonstrated experimentally on real

data.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since the appearance of the first image databases in the 80’s, im-

age retrieval has been the goal of intensive research. Early meth-

ods did not search the images themselves but utilized some kind

of metadata and image annotation (tagging) to retrieve the desired

images. As many large-scale databases do not contain any annota-

tions (manual annotation is expensive and laborious while automatic

tagging is still under development), content-based image retrieval

(CBIR) methods have become one of the most important challenges

in computer vision. By CBIR we understand methods that search a

database and look for images which are the “most similar” (in a pre-

defined metric) to a given query image. CBIR methods do not rely

on a text annotation and/or other metadata but analyze the actual

content of the images. Each image is described by a set of features

(often hierarchical or highly compressive ones), which may reflect

the image content characteristics the user prefers – colors, textures,

dominant object shapes, etc. The between-image similarity is then

measured by a proper (pseudo) metric in the corresponding feature

space.

CBIR is a subjective task because there is no “objective” similarity

measure between the images. Hence, many CBIR systems aim to re-

trieve images which are perceived as the most similar to the query

image for a majority of users and the users feel this similarity at the

first sight without a detailed exploration of the image content. This

requirement, along with the need for a fast system response, has led
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to a frequent utilization of low-level lossy features based on image

colors/graylevels. A typical example is an intensity or color histogram.

It is well known that the histogram similarity is a salient property for

human vision. Two images with similar histograms are mostly per-

ceived as similar even if their actual content may be very different

from each other. On the other hand, those images that have substan-

tially different histograms are rarely rated by observers as similar.

Another attractive property of the histogram is that, if normalized to

the image size, it does not depend on image translation, rotation and

scaling, and depends only slightly on elastic deformations. Thanks to

this, one need not care about image geometry and look for geometric

invariants. Simple preprocessing can also make the histogram insen-

sitive to linear variations of the contrast and brightness of the image.

Hence, the histogram established itself as a meaningful image char-

acteristic for CBIR [7–9].

The histogram is rarely used for CBIR directly as it is basically for

two reasons. The histogram is not only an inefficiently large structure

(in case of color images, the RGB histogram is stored in a vector of 224

integers, which may be even more than the memory requirement of

the original image) but it is also redundantly detailed. It is sufficient

and computationally efficient to capture only the prominent features

of the histogram and suppress the insignificant details. To do so,

some authors compressed the histogram from the full color range

into few bins [3,4] while some others represented the histogram

by its coefficients in a proper functional basis. The advantage of the

latter approach is that the number of coefficients is a user-defined

parameter – we may control the trade-off between a high com-

pression on one hand and an accurate representation on the other

hand. It is very natural to get inspired by a clear analogy between

histogram of an image and a probability density function (pdf)

of a random variable. In probability theory, the pdf is usually
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characterized by its moments, so it is worth applying the same

approach in the histogram-based CBIR [6,10].

The CBIR methods based on comparing histograms are sensitive to

noise in the images, regardless of the particular histogram represen-

tation. Additive noise results in a histogram smoothing, the degree

of which is proportional to the amount of noise. This immediately

leads to a drop of the retrieval performance because different his-

tograms tend to be more and more similar to each other due to their

smoothing. In digital photography, the noise is unavoidable. When

taking a picture in low light, we use high ISO and/or long exposure.

Both amplifies the background noise, which is present in any elec-

tronic system, such that the noise energy may be even higher than

that of the signal. Particularly compact cameras and cell-phone cam-

eras with small-size chips (i.e. devices which produce vast majority

of photographs on Flickr, on other servers, and on personal websites)

suffer from this kind of noise, along with an omnipresent thermal

noise. In-built noise reduction algorithms are able to suppress the

noise only slightly and perform at the expense of fine image details.

Although the noise in digital photographs is an issue we can nei-

ther avoid nor ignore, very little attention has been paid to develop-

ing noise-resistant CBIR methods. The authors of the papers on CBIR

have either skipped this problem altogether or rely on denoising al-

gorithms applied to all images before they enter the database. Such a

solution, however, is not convenient or even not realistic, because the

denoising inevitably introduces artifacts such as high-frequency cut-

off, requires additional time, and mostly also needs a cooperation of

the user in tuning the parameters. In this paper, we present an origi-

nal histogram-based image retrieval method which is not only robust

but totally resistant (at least theoretically) to additive Gaussian noise.

The core idea of the method is a proper representation of the his-

togram by certain characteristics, which are not affected by the noise.

We stress that the paper does not aim to evaluate in which tasks and

for what purposes a histogram-based CBIR is appropriate. We rather

show how, if it is appropriate, it should be implemented in the case of

noisy database and/or noisy query images. Our method does not per-

form any denoising and cannot replace it in the applications where

the noise should be suppressed to improve the visual quality of the

image.

In the rest of the paper, we first describe the noise model we

are working with and show how this noise influences the image his-

togram. Then we present a noise-resistant representation of the his-

togram and demonstrate the advantage of this representation in CBIR.

In the experimental part, we compare the new method with sev-

eral traditional approaches and demonstrate their advantages on a

database of more than 70,000 images and 30,000 queries.

2. The noise model

As we already mentioned, we primarily consider the thermal

noise and electronic background noise of consumer cameras. It is a

common belief that such noise n can be modeled as a stationary ad-

ditive Gaussian white noise (AGWN) with zero mean and standard

deviation σ , and that the noise is not correlated with the original im-

age f. If this assumption were true, the noise normalized histogram

hn would have a Gaussian form

hn(t) = 1

σ
√

2π
exp ( − t2

2σ 2
), (1)

where t is the index of the graylevel. The histogram hg of the noisy im-

age g = f + n would then be a convolution of the original histogram

and the noise histogram

hg(t) = (h f ∗ hn)(t).

Apparently, such an ideal model can hardly be encountered in prac-

tice. Let us however demonstrate on an example that it performs a

reasonable approximation of a real noise. In Fig. 4(a), we can see a clip

of size 427 × 386 pixels of a real noisy image taken under low-light

conditions. In order to separate f and n, we took this image repeatedly

twenty-times and we estimated f by time-averaging these 20 frames

(see Fig. 4(b)). This allows us to calculate all three histograms hg, hf,

and hn and a synthetic histogram hc = h f ∗ hn (see Fig. 1 from top

to bottom). We can see that the noisy picture histogram in Fig. 1(c)

matches the synthetic histogram in Fig. 1(d). Additionally, in Fig. 2 we

can see the normality plot of the image noise n is very close to a nor-

mal distribution. We repeated this experiment for many images with

the same conclusion. Hence, we consider our noise model acceptable

and use it for deriving a proper histogram representation.

3. Histogram representation resistant to image noise

In this section, we present a representation of the image his-

togram by descriptors which are not affected by AGWN. These de-

scriptors are based on the statistical moments of the histogram,

which is a common approach to the characterization of pdf’s in prob-

ability theory. Let h be a pdf of a random variable X. Then the quantity

m(h)
p =

∫
xph(x)dx (2)

where p = 0, 1, 2, . . . , is called general moment of the pdf. Clearly,

m0 = 1, m1 equals the mean value and m2 would equal the vari-

ance (if the histogram was centralized) of X. In general, the existence

(finiteness) of the moments is not guaranteed, however if h is a (nor-

malized) histogram, its support is bounded and all mp’s exist and are

finite. On the other hand, any compactly-supported pdf can be ex-

actly reconstructed from the set of all its moments.1 In this sense

moments provide a complete and non-redundant description of a

pdf/histogram.

Unfortunately, the histogram moments themselves are affected by

image noise. As the histogram of the noisy image is a smoothed ver-

sion of the original histogram, it holds for its moments

m(g)
p =

p∑
k=0

(
p

k

)
m(n)

k
m( f )

p−k
. (3)

This assertion can easily be proved just using the definitions of mo-

ments and of convolution. Since the noise is supposed to be Gaussian,

hn has a form of (1) and its moments are

m(n)
p = σ p(p − 1)!! (4)

for any even p. The symbol k!! means a double factorial, k!! = 1 · 3 ·
5 . . . k for odd k, and by definition ( − 1)!! = 0!! = 1. For any odd p

the moment m
(n)
p = 0 due to the symmetry of the Gaussian distribu-

tion. Hence, (3) obtains the form

m(g)
p =

[p/2]∑
k=0

(
p

2k

)
σ 2k(2k − 1)!! · m( f )

p−2k
. (5)

We can see that the moment of the noisy image histogram equals

the moment of the clear image histogram plus some additional terms

consisting of the moments of hf of lower orders multiplied by a cer-

tain power of σ . For the first few moments we have

m(g)
1

= m( f )
1

,

m(g)
2

= m( f )
2

+ σ 2,

m(g)
3

= m( f )
3

+ 3σ 2m( f )
1

,

1 A more general moment problem is well known from theory of probability: can

a given sequence be a set of moments of some compactly-supported function? The

answer is yes if the sequence is completely monotonic.
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