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a b s t r a c t

Researches in granular modeling produced a variety of mathematical models, such as intervals (higher-order)

fuzzy sets, rough sets, and shadowed sets, which are all suitable to characterize the so-called information

granules. Modeling of the input data uncertainty is recognized as a crucial aspect in information granulation.

Moreover, the uncertainty is a well-studied concept in many mathematical settings, such as those of proba-

bility theory, fuzzy set theory, and possibility theory. This fact suggests that an appropriate quantification of

the uncertainty expressed by the information granule model could be used to define an invariant property,

to be exploited in practical situations of information granulation. In this perspective, we postulate that a

procedure of information granulation is effective if the uncertainty conveyed by the synthesized information

granule is in a monotonically increasing relation with the uncertainty of the input data. In this paper, we

present a data granulation framework that elaborates over the principles of uncertainty introduced by Klir.

Being the uncertainty a mesoscopic descriptor of systems and data, it is possible to apply such principles

regardless of the input data type and the specific mathematical setting adopted for the information granules.

The proposed framework is conceived (i) to offer a guideline for the synthesis of information granules and (ii)

to build a groundwork to compare and quantitatively judge over different data granulation procedures. To

provide a suitable case study, we introduce a new data granulation technique based on the minimum sum of

distances, which is designed to generate type-2 fuzzy sets. The automatic membership function elicitation is

completely based on the dissimilarity values of the input data, which makes this approach widely applicable.

We analyze the procedure by performing different experiments on two distinct data types: feature vectors

and labeled graphs. Results show that the uncertainty of the input data is suitably conveyed by the generated

type-2 fuzzy set models.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Granulation of information [11,16,38,42,43] emerges as an essen-

tial data analysis paradigm. Information used or acquired to describe

an abstract/physical/social process is usually expressed in terms of

data (experimental evidence). Therefore, granulation of information

usually translates to data granulation. Granulation of data can be

roughly described as the action of aggregating semantically and func-

tionally similar elements of the available experimental evidence. This

is performed to achieve a higher-level data description, which is im-

plemented in terms of information granules (IGs) [32]. IGs are sound

data aggregates that are formally described by a suitable mathemat-

ical model. Many mathematical settings have been proposed so far

in the related literature, such as intervals—hyperboxes (higher or-

der) fuzzy sets, rough sets, and shadowed sets [38]. The synthesized
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IGs can be used for interpretability purposes [26,27] or they can be

used as a computational component of a suitable intelligent system

[1,4,10,22,24,25,32,34,37,50]. Nonetheless, the problem of designing

effective and justifiable data granulation procedures (GPs) remains of

paramount importance [6,7,12,29–31,40,41].

The principle of justifiable granularity (PJG) is a well-established

guideline for the synthesis of IGs [33,35,36]. The PJG states that gran-

ulation should be performed by finding the “optimal” compromise

among two conflicting requirements: specificity and generality. In

other terms, an IG modeling input data should be designed such that

it retains only the essential information (it should be specific, con-

veying a specific semantic content) but, at the same time, it should

cover a reasonable amount of information. Since the PJG is conceived

to provide an adaptive mechanism to the information granulation

problem, it is not designed to directly offer a built-in mechanism to

objectively evaluate the quality of the granulation itself. To this end,

it is necessary to rely on external performance measures to quantify

and judge over the quality of an IG.

The uncertainty is a peculiar property of virtually every human ac-

tion that involves reasoning, decision making, and perception [44,48].
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Modeling the uncertainty of the input data is an essential mission in

data granulation. In fact, any IG model is designed to handle and hence

express the uncertainty through an appropriate formalism. How the

uncertainty is embedded into the IG model depends, of course, on

the specific mathematical setting used for the IG. However, while

the numerical quantification of the uncertainty pertaining a specific

situation may change as we change the mathematical setting of the

IG, the level of uncertainty should remain the same. In these terms,

the principles of uncertainty [14,15] offer a compelling guideline to

implement and evaluate practical data granulation techniques.

In this paper, we elaborate a conceptual data granulation frame-

work over the principles of uncertainty. A preliminary version of the

herein exposed ideas appeared in [20]. Here we further elaborate over

this preliminary work by providing a more extensive discussion of the

framework, offering new experiments that demonstrate the different

facets underlying such ideas. In the proposed framework we idealize

the uncertainty as an “invariant” property, to be preserved as much as

possible during the granulation of the input data. As a consequence,

we are able to objectively quantify the effectiveness of the granula-

tion, regardless of the input data representation and the adopted IG

model. This interpretation allows also to quantitatively judge on a

common groundwork different data granulation techniques operat-

ing on the same data. We provide a demonstration of these ideas by

discussing a data granulation technique that generates type-2 fuzzy

sets (T2FSs).

This paper is structured as follows. Section 2 introduces the princi-

ples of uncertainty. Throughout Section 3 we introduce the proposed

conceptual framework for data granulation. In Section 4 we present

a procedure to generate T2FSs by means of the minimum sum of dis-

tances (MinSOD) technique. In Section 5 we discuss the experiments

and related results. Section 6 concludes the paper. We provide two

appendices: Appendix A introduces to the context of T2FSs, while

Appendix B the MinSOD.

2. The principles of uncertainty

The principles of uncertainty have been introduced by [14] two

decades ago, with the aim of providing high-level guidelines to the

development of well-justified methods for problem solving in pres-

ence of uncertainty. Such principles elaborate over the ubiquitous

concepts of uncertainty and information. It is intuitive to understand

that uncertainty and information are intimately related: the reduc-

tion of uncertainty is caused by gaining new information, and vice

versa.

Three principles have been introduced (quotes are taken from

[14]):

1. Principle of minimum uncertainty: “It facilitates the selection of

meaningful alternatives from solution sets obtained by solving

problems in which some of the initial information is inevitably

reduced in the solutions to various degrees. By this principle, we

should accept only those solutions in a given solution set for which

the information reduction is as small as possible.”

2. Principle of maximum uncertainty: “This is reasoning in which

conclusions are not entailed in the given premises. Using com-

mon sense, the principle may be expressed by the following re-

quirement: in any ampliative inference, use all information avail-

able but make sure that no additional information is unwittingly

added.”

3. Principle of uncertainty invariance: “The principle requires that

the amount of uncertainty (and information) be preserved when a

representation of uncertainty in one mathematical theory is trans-

formed into its counterpart in another theory.”

A combination of the first and third principle provides a com-

pelling guideline for the purpose of data granulation. In fact, gran-

ulation implies mapping some input data (experimental evidence)

Fig. 1. Data granulation as a mapping, φ : P<∞(X ) → Y .

originating from a certain input domain, sayX , to a domain of IGs, say

Y . We argue that, when performing such a mapping, the uncertainty,

regardless of the adopted formal mathematical framework, should

be considered as an invariant property to be preserved as much as

possible.

3. Data granulation with the principles of uncertainty

In this section, we introduce the proposed data granulation frame-

work. Fig. 1 illustrates the data granulation process. A procedure of

data granulation can be formalized as a mapping, φ(·), among two

domains: input domain, X , and the output domain, Y . X is the do-

main of the input data, whereas Y is a domain of IGs (e.g., a domain

of hyperboxes, fuzzy sets, shadowed sets, rough sets and so on). In

practice, φ( · ) is a formal procedure for mapping a finite input dataset

S ∈ P<∞(X ) with an output IG, say Ã ∈ Y, i.e., Ã = φ(S). Please note

that we used a special mapping, P<∞(·), in the input domain to al-

low discussing about S in terms of “element” of the input domain;

in the following P<∞(X ) is assumed to return all n-subsets of X ,

with n finite. Note that Y, as well as Ã, should be denoted by mak-

ing explicit reference to X and S, respectively, since IGs depend on

the input. However, if no confusion is possible, we will avoid such

specifications.

There are a number of important questions that should be an-

swered: “Is the mapping φ( · ) well-justified? Moreover, how do we

objectively assess the quality of the mapping?” “Are there invariant

properties that must be preserved in the transformation fromS to Ã?”

“Can we numerically quantify those properties?” “Given two GPs, are

we able to affirm that one performs a better granulation than the

other by considering the same experimental conditions?” Reasoning

over those questions provides important motivations for the design

and formal evaluation of information GPs.

IGs are semantically sound constructs that are synthesized to con-

vey higher-level information with respect to (w.r.t.) the data from

which they are generated [32]. All models used in information gran-

ulation [38] are designed to realize a “simplification” of the input

data. This consists in aggregating data that are considered indistin-

guishable (indiscernible) and functionally/semantically related. IGs

are hence designed also to handle the uncertainty caused by this sim-

plification. How the uncertainty is handled by the IG model depends

on the specific mathematical setting used to describe the IG [15].

However, it is a reasonable assumption that, regardless of the specific

mathematical setting, two IGs with different models, but synthesized

from the same input data, should convey a comparable uncertainty,

i.e., they should agree at least on the “level of uncertainty”. The same

concept holds for the uncertainty measured in the input with the one

measured in the resulting output IG.

In the following, we formalize a conceptual framework to design

and evaluate specific implementations of the mapping φ( · ). We

refer to the proposed framework as the principle of uncertainty level

preservation (PULP). Usually, X is a domain of non-granulated data,

such as R
d vectors, sequences of objects, or graphs. However, X can

be conceived also as a domain of IGs. In this case, since the role of

φ( · ) is to provide an abstraction, Y must be a domain of higher-

level IGs w.r.t. those of X . In the following, however, we will consider

mappings from input domains of non-granulated data types only.
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