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a b s t r a c t

The fuzzy c-means algorithm (FCM) is a widely used clustering algorithm. It is well known that the fuzz-
ifier, m, which is also called fuzzy weighting exponent, has a significant impact on the performance of the
FCM. Most of the researches have shown that there exists an effective range of the value for m. However,
since the method adopted by researchers is mainly experimental or empirical, it is still an open problem
how to select an appropriate fuzzifier m in theory when implementing the FCM. In this paper, we propose
a theoretical approach to determine the range of the value of m. This approach utilizes the behavior of
membership function on two data points, based on which we reveal the partial relationship between
the fuzzifier m and the dataset structure.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The fuzzifier m, where m 2 ½1;þ1Þ, is a parameter introduced
into the clustering function WGSS by Bezdek (1981). m plays an
important role in the FCM algorithm. A proper value of m can sup-
press the noise and smooth the membership function. However,
there has been little theoretical basis for an optimal choice of m
in the FCM.

Many heuristic strategies are recommended in the literature.
There is an experiential scope of m given by Bezdek (1981), where
the lower and the upper bounds are 1.1 and 5, respectively. In
1976, a physical interpretation of the FCM algorithm when m = 2
was also given by Bezdek (1976). From the aspect of word recogni-
tion, Chan and Cheung (1992) proposed that the value of m should
be between 1.25 and 1.75. Considering the convergence of the
algorithm, Bezdek and Hathaway (1987) indicated that m > n/
(n � 2). Based on the performance of some cluster validity indices,
Pal and Bezdek (1995) suggested that the value of m is probably in
the interval [1.5,2.5]. Most researchers adopt m = 2 when perform-
ing the FCM algorithm. Some researchers (Hwang and Rhee, 2007;
Yu, 2003; Yu et al., 2004) believe that the structure of dataset influ-
ences the value of m. Ozkan and Turksen (2004) focused on the
uncertainty contained in m and proposed an entropy assessment

for m. They (Ozkan and Turksen, 2007) also proved that the range
value of m that captures the uncertainty generated by m itself is
[1.4,2.6]. Gao (2004) proposed two methods to find the proper
value of m. The first one is based on fuzzy decision theory, but it
needs to define two membership functions which lack of
theoretical basis. The second one is based on the concavo-convex
property of clustering function, whose physical interpretation is
of ambiguity.

In this paper, a theoretical approach used to determine the range
of the value of m is proposed. This approach utilized the behavior of
membership function on two special data points. The rest of the
paper is organized in four sections. In Section 2, we analyze the con-
notation of m. In Section 3, two special data points and the behavior
of their membership function are explained. In Section 4, we
propose the approach to determine the range of the value of m.
And the conclusions are drawn in Section 5.

2. The connotation of m

The parameters used in the FCM are number of clusters, cluster
centers, level of fuzziness (fuzzifier) and similarity measure.
Theory 1 describes what an important role the m plays in the
FCM algorithm.

Theory 1

(1) if m = 1, then the FCM algorithm reduces to HCM algorithm.
(2) if m! 1þ, then the FCM algorithm reduces to HCM algo-

rithm with probability equal to 1, i.e. the FCM algorithm can-
not do any fuzzy partition.
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(3) if m! þ1, then the membership matrix U ¼ ½lik� ¼ ½1=c�,
i.e. the centers of various groups in the FCM are degraded
into almost the center of all the data.

Therefore, the fuzzifier m controls the amount of fuzziness of
the final C-partition in the FCM algorithm.

According to literature 6, an intuitionistic illustration of
theory 1 is shown in Fig. 1.

Suppose that there are two clusters with the same structure
and density in 2-D dataset, denoted as C1 and C2. The cluster cen-
ters are t1 and t2 respectively. The vertical line in Fig. 1(a) can
be considered as a ‘‘decision’’ boundary where patterns are
equally distant from the two cluster center, that is, the relative
distance between a pattern and each cluster center equaling
0.5. The case shown in Fig. 1(a) is a crisp membership assign-
ment in the FCM. That means the patterns located to the left
(right) of the boundary belongs to cluster C1 (C2). This boundary
can be expanded by a fuzzifier m as shown in Fig. 1(b) and (c). If the
value of fuzzifier m is increased then the maximum fuzzy bound-
ary becomes wider.

3. Membership grade

3.1. The membership function

The FCM membership function is calculated as:

li;k ¼
Xc

t¼1

kxk � v ikA

kxk � v tkA

� � 2
m�1

" #�1

ð1Þ

where li,k is the membership value of kth sample in ith cluster such
that li;k 2 ½0;1�, c is the number of clusters, xk is the kth sample, vi is
the cluster center of ith cluster, k � kA is the norm function, andPc

t¼1lt;k ¼ 1 for a given m > 1. This means that the sum of the de-
grees of membership values of any data is one, or in other words,
any data should be a member of at least one of the clusters with
a membership value greater than zero.

3.2. Two rules

The expression indicates that the membership value is con-
trolled by fuzzifier m. However, there are two points where the
membership values do not depend on m. One of the points is the
mass center that has equal distance to all cluster centers and thus
has a membership value 1/c to all cluster centers. It is identified by
cluster centers and continuous membership function such that it
has equal distance from all the cluster centers. In addition, when
m goes to infinity, cluster centers collapse to this point. Hence this
value clearly does not depend on m. The other points are the clus-
ter center values which have a membership value 1 in its cluster

and 0 to all others. Hence these values also do not depend on m.
According to the definition of membership, we can obtain two
tenable rules which can assist us to find the reasonable range of
the value of m.

Rule 1. The membership value of sample p is li;p ! 1=c, if p is
located in the neighborhood of the mass center.

Rule 2. The membership value of sample q is li;q ! 1, if q is lo-
cated in the neighborhood of the cluster center v i.

3.3. Calculation of li;p and li;q

In order to calculate the li;p, we expand the function around the
mass center by using Taylor series expansion.

One-dimensional Taylor series of a real function f ðxÞ about a
point x ¼ x0 is given by

f ðxÞ ¼ f ðx0Þ þ f ’ðx0Þðx� x0Þ þ
1
2!

f ’’ðx0Þðx� x0Þ2 þ � � �

þ 1
n!

f ðnÞðx0Þðx� x0Þn þ � � �

¼ f ðx0Þ þ f ’ðx0Þðx� x0Þ þ R ð2Þ

where R is the remainder. Let d� denote the distance measure to all
cluster centers from the mass center, di denotes the distance to ith
cluster center of the point located in the neighborhood of the mass
center. Then, Taylor series of the li;p can be written as

li;p ¼ li;p

���
d�i
þ @

@di
li;p

���
d�i
ðdi � d�i Þ þ R ð3Þ

wherein,

li;pjd�i ¼
1
c
;

@li;p

@di
¼ �

Pc
t¼1;t–i

2
m�1

� � di
dt

� � 2
m�1

d�1
iPc

t¼1ð
di
dt
Þ

2
m�1

h i2

Since the derivative @li;p

@di
should be evaluated at the mass center

where dj ¼ d�, for j ¼ 1; . . . ; c, we obtain

@

@di
li;pjd�i ¼ �

ðc � 1Þ 2
m�1

� �
Pc

t¼11
	 
2

1
d�i
¼ �
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m�1

� �
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1
d�i

ð4Þ

Neglect the remainder R, then

li;p ffi
1
c
�
ðc � 1Þð 2

m�1Þ
c2

di � d�i
d�i

� �
¼ 1

c
�
ðc � 1Þ 2

m�1

� �
c2 ðDÞ ð5Þ

We can use the membership function directly to calculate li,q.
Let di denote the distance to the ith cluster center from a point lo-
cated in the neighborhood of vi. di is very small in value compared
to the distance to all the other cluster centers from this point. Thus

in general, let di
dj;j–i
¼ d, then

li;q ¼ 1þ ðc � 1Þd
2

m�1

h i�1
ð6Þ

(b) (c)(a)

Fig. 1. An intuitionistic illustration of m.
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