
Faster subgraph isomorphism detection by well-founded total order indexing

Markus Weber a,⇑, Marcus Liwicki a, Andreas Dengel a,b

a German Research Center for Artificial Intelligence (DFKI) GmbH, Trippstadter Straße 122, 67663 Kaiserslautern, Germany
b Knowledge-Based Systems Group, Department of Computer Science, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany

a r t i c l e i n f o

Article history:
Available online 11 May 2012

Keywords:
Graph isomorphism
Subgraph isomorphism
Tree search
Decision tree
Indexing

a b s t r a c t

In this paper an extension to index-based subgraph matching is proposed. This extension significantly
speeds up the indexing time for graphs where the nodes are labeled with a rather small amount of
different classes. Furthermore, the needed storage amount is significantly reduced. In order to reduce
the complexity, we introduce a weight function for labeled graphs. Using this weight function, a well-
founded total order is defined on the weights of the labels. Inversions which violate the order are not
allowed. A computational complexity analysis of the new preprocessing is given and its completeness
is proven. Furthermore, in a number of practical experiments with randomly generated graphs the
improvement of the new approach is shown. In experiments performed on random sample graphs,
and on real-world datasets. The number of permutations for the real-world datasets have been decreased
to a fraction of 10�5 and 10�8 in average compared to the original approach by Messmer. The novel index-
ing strategy makes indexing of larger graphs feasible, allowing for fast detection of subgraphs.

� 2012 Elsevier B.V. All rights reserved.

Graphs play a major role in structural pattern recognition. An
important task in this field is to find similar structures (error-toler-
ant graph matching) or the same structure (exact graph matching).
The focus of this paper is on the latter task, which is important if
exactly the same sub-structure needs to be retrieved.

Exact graph matching is needed when the user searches for
specific constellations in molecules (Schomburg et al., 2004), in
computer vision for the recognition of 3-D objects (Kim and Kak,
1991; Wong, 1992), shape matching in image analysis (Cheng
and Huang, 1984; Bunke and Messmer, 1995), or room-constella-
tions in floor plans (Weber et al., 2010). In most applications, the
retrieval result should be available in real-time and the database
of reference structures does not change too often. For those situa-
tions it is advisable to build an index of the reference structures in
advance.

Such a method has been proposed by Messmer and Bunke
(1999). It builds an index using the permutated adjacency matrix
of the graph. The real-time search is then based on a tree based
search. While the method has shown to be efficient for reference
set with small graphs, it is infeasible for graphs with more than
19 vertices.

This paper proposes a method to overcome this problem.
Assuming that the number of labels for the nodes is relatively small,
we introduce a well-founded total order and apply this during
index building. This optimization decreases the amount of possible

permutations dramatically and allows building indexes of graphs
with even more than 30 vertices.

Note that a preliminary version of this paper has been published
in Weber et al. (2011). However, the focus of Weber et al. (2011)
was on a short description of the approach and first experiments
on random graphs. This paper elaborates more on the algorithm,
its validity and its complexity. Furthermore, additional experi-
ments have been performed new experiments on random graphs
with 100–150 vertices. Moreover experiments on two real-world
databases, i.e., the AIDS Antiviral Screen Database of Active
Compounds (Development Therapeutics Program, 2004) and the
Mutagency database (Kazius et al., 2005) have been accomplished.

The rest of this paper is organized as follows. First, Section 1
gives an overview over related work. Subsequently, Section 2 intro-
duces definitions and notation which are used and Section 3
describes the new preprocessing step. Next, Section 4 shows that
the number of computational steps is significantly decreased on
random graphs as well as on realistic databases. Finally, Section
5 concludes the work.

1. Related work

In (Conte et al., 2004; Gao et al., 2009), a survey of the work done
in the area of graph matching is given. Conte et al. (2004)
defines two taxonomies, one which almost contains all the graph
matching algorithms proposed from the late seventies, and
describes the different classes of algorithms. The second considers
the types of common applications of graph-based techniques in
the Pattern Recognition and Machine Vision field. Using this

0167-8655/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.patrec.2012.04.017

⇑ Corresponding author.
E-mail address: Markus.Weber@dfki.de (Markus Weber).

Pattern Recognition Letters 33 (2012) 2011–2019

Contents lists available at SciVerse ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec

http://dx.doi.org/10.1016/j.patrec.2012.04.017
mailto:Markus.Weber@dfki.de
http://dx.doi.org/10.1016/j.patrec.2012.04.017
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


taxonomy, our approach can be assigns to exact matching, as it is a
modified version of Messmer’s method (Messmer and Bunke, 1999)
which is assign to this category.

The focus of Gao et al. (2009) is the calculation of error-tolerant
graph-matching; where calculating a graph edit distance (GED) is
an important way. Mainly the GED algorithms described are cate-
gories into algorithms working on attributed or non-attributed
graphs. Ullman’s method (Ullmann, 1976) for subgraph matching
is known as one of the fastest methods. The algorithm attains effi-
ciency by inferentially eliminating successor nodes in the tree
search. To filter unmatched graphs, enumerated paths are used
as index features in GraphGrep (Giugno and Shasha, 2002). While
TreePi (Zhang et al., 2007) and FG-Index (Cheng et al., 2007) use
frequent subtrees/subgraphs as index features, GIndex (Yan et al.,
2004) uses discriminative frequent fragments to improve filtering
and reduce index size. GString (Jiang et al., 2007) reduces the prob-
lem of graph querying to subsequence matching. A graph decom-
position based approach is taken in (Williams et al., 2007) to
hash canonical subgraphs for fast accessing. A similar approach is
taken in SAGA (Tian et al., 2007) in which answers are generated
by assembling hits of enumerated fragments. In (Jamil, 2011), a
new data model for the storage and management of graph objects
has been proposed. It relies on the idea of structural unification, a
novel graph representation based on minimum structures, and an
indexing mechanism for storing minimum graph structures.

Bunke (2000), Bunke (2000) discussed several approaches in
graph-matching. One way to cope with error-tolerant subgraph
matching is using the maximum common subgraph as a similarity
measure. Furthermore the application of graph edit costs which is
an extension of the well-known string edit distances. A further
group of suboptimal methods are approximative methods, they
are based on neural networks (Jain and Wysotzki, 2005), such as
the Hopfield network, Kohonen map (Xu and Oja, 1990) or Potts
MFT neural net. Moreover methods as genetic algorithms (Cross
et al., 1996; Wang et al., 1997), Eigenvalues (Umeyama, 1988),
and linear programming (Almohamad and Duffuaa, 1993) are used.

Recently, He and Singh proposed GraphQL as a query language for
graphs He and Singh, 2008. GraphQL assumes an underlying optimi-
zation based on prudent access structures and cost model. Graph
matching is challenging in presence of large databases (Weber
et al., 2010; Bunke, 2000; Bunke, 1997; Riesen and Bunke, 2008.
Consequently, methods for preprocessing or indexing are essential.
Preprocessing can be performed by graph filtering or concept clus-
tering. The main idea of the graph filtering is to use simple features
to reduce the number of feasible candidates. Another concept, clus-
tering, is used for grouping similar graphs. In principle, given a sim-
ilarity (or dissimilarity) measure, such as GED Bunke and Shearer,
1998, any clustering algorithm can be applied. Graph indexing can
be performed by the use of decision trees.

Messmer and Bunke (1999) proposed a decision tree approach
for indexing the graphs. They are using the permutated adjacency
matrix of a graph to build a decision tree. This technique is quite
efficient during run time, as a decision tree is generated before-
hand which contains all model graphs. However, the method has
to determine all permutations of the adjacency matrices of the
search graphs. Thus, as discussed in their experiments, the method
is practically limited to graphs with a maximum of 19 vertices. The
main contribution of this paper is to improve the method of Mess-
mer and Bunke for special graphs by modifying the index building
process.

2. Definitions and notations

In this section some basic definitions are given which will be
used throughout the paper.

Definition 1. A labeled graph is a 6-tuple, G = (V, E, Lv, Le, l,t),
where

� V is a set of vertices.
� E # V � V is a set of edges.
� Lv is a set of labels for the vertices.
� Le is a set of labels for the edges.
� l:V ? Lv is a function which assigns a label to the vertices.
� t:E ? Le is a function which assigns a label to the edges.

The labels Lv set is a finite set and the labeling function l as-
signs the type of an entity to a concrete vertex.

A common representation for a labeled graph is an adjacency
matrix.

Definition 2. An adjacency matrix is n � n matrix M.

M ¼ ðmijÞ; i; j ¼ 1; . . . ;n; where
mii ¼ lðv iÞ

and

mij ¼ tððv i; v jÞÞ for i – j:

Fig. 1 shows an example illustration of a graph and a possible
corresponding adjacency matrix. Furthermore, the so called row-
column representation is given. In a row-column representation
the matrix is represented by its row-column elements ai, where ai

is a vector of the form

ai ¼ ðm1i;m2i; . . . ;mii;miði�1Þ; . . . ;mi1Þ:

The following definition for the subgraph is given by:

Definition 3. Given a graph G = (V, E, Lv, Le, l, t), a subgraph of G is
a graph G0 ¼ V 0; E0;l0; t0; L0v ; L

0
e

� �
such that

1. V0 # V.
2. E0 = E \ (V0 � V0).

3. l0ðvÞ ¼ lðvÞ if v 2 V 0

undefined otherwise

�
4. t0ðeÞ ¼ tðeÞ if e 2 E0

undefined otherwise

�
Let G = (V,E,Lv,Le,l,t) be a graph with V = {v1,v2, . . . ,vn}. As sta-

ted above, G can also be represented by an adjacency matrix M.
Note that the matrix M is not unique for a graph G. If M repre-
sents G, then any permutation of M is also a valid representation
of G.

Definition 4. A n � n matrix P = (pij) is a permutation matrix if

1. pij 2 {0,1} for i, j = 1, . . . ,n.
2.
Pn

i¼1pij ¼ 1 for j = 1, . . . ,n.
3.
Pn

j¼1pij ¼ 1 for i = 1, . . . ,n.

Let G be a graph represented by an n � n adjacency matrix M
and P be an n � n permutation matrix P with PT as the transposed
matrix, then the n � n matrix

M0 ¼ PMPT

is also a valid representation of G.

Definition 5. Let G = (V,E,l,t,Lv,Le) be a graph, then A(G) is the set
of all permuted adjacency matrices of G,

AðGÞ ¼ fMP jMP ¼ PMPT where P is a n� n permutation matrixg:

2012 Markus Weber et al. / Pattern Recognition Letters 33 (2012) 2011–2019



Download English Version:

https://daneshyari.com/en/article/534145

Download Persian Version:

https://daneshyari.com/article/534145

Daneshyari.com

https://daneshyari.com/en/article/534145
https://daneshyari.com/article/534145
https://daneshyari.com

