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a b s t r a c t

We present an approach for Maximum Likelihood estimation of correspondence and alignment parame-
ters that benefits from the representational skills of graphs. We pose the problem as one of mixture mod-
eling within the framework of the Expectation–Maximization algorithm. Our mixture model
encompasses a Gaussian density to model the point-position errors and a Bernoulli density to model
the structural errors. The Gaussian density components are parameterized by the alignment parameters
which constrain their means to move according to a similarity transformation model. The Bernoulli den-
sity components are parameterized by the continuous correspondence indicators which are updated
within an annealing procedure using Softassign. Outlier rejection is modeled as a gradual assignment
to the null node. We highlight the analogies of our method to some existing methods.

We investigate the benefits of using structural and geometrical information by presenting results of the
full rigid version of our method together with its pure geometrical and its pure structural versions. We
compare our method to other point-set registration methods as well as to other graph matching methods
which incorporate geometric information. We also present a non-rigid version of our method and com-
pare to state-of-the-art non-rigid registration methods.

Results show that our method gets either the best performance or similar performance than state-of-
the-art methods.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Alignment of point-sets is frequently used in pattern recognition
when objects are represented by sets of coordinate points. The idea
behind is to be able to compare two objects regardless the effects
of a given transformation model on their coordinate data. This is
at the core of many object recognition applications where the ob-
jects are defined by coordinate data (e.g., medical image analysis,
shape retrieval, . . .), learning shape models (Dryden and Mardia,
1998; Cootes et al., 1995) or reconstructing a scene from various
views (Hartley and Zisserman, 2000).

Given that the correspondences are known, there is an exten-
sive work done towards the goal of finding the alignment parame-
ters that minimize some error measure. To cite a few, Dryden and
Mardia (1998) and Kendall (1984) deal with isometries and simi-
larity transformations; Berge (2006), and Umeyama (1991) deals
with Euclidean transformations (i.e. excluding reflections from
isometries); Haralick et al. (1989) deal with similarity and projec-
tive transformations; and Hartley and Zisserman (2000) deal
exclusively with projective transformations.

However, the point-set alignment problem is often found in the
more realistic setting of unknown point-to-point correspondences.
This problem becomes then a registration problem, this is, one of
jointly estimating the alignment and correspondence parameters.
Although non-iterative algorithms exist for specific types of trans-
formation models (Ho and Yang, 2011), this problem is usually
solved by means of non-linear iterative methods that, at each iter-
ation, estimate correspondence and alignment parameters. Despite
being more computationally demanding, iterative methods are
more appealing to us than the direct ones due to its superior toler-
ance to noise and outliers.

We distinguish between two families of approaches at solving
this problem. Ones are based on the Expectation–Maximization
(EM) algorithm (Dempster et al., 1977), and the others use Softas-
sign (Gold and Rangarajan, 1996; Gold et al., 1998; Rangarajan
et al., 1997). The former ones have the advantage of offering statis-
tical insights of such decoupled estimation processes while the lat-
ter ones benefit from the well-known robustness and convergence
properties of the Softassign embedded within deterministic
annealing procedures.

Myronenko and Song (2010) proposed Coherent Point Drift
(CPD), a point-set registration method using the EM algorithm that
is defined for rigid, affine and non-rigid transformations. Gold et al.
(1998), Rangarajan et al. (1997) proposed Robust Point Matching
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(RPM), a method using Softassign that is defined for affine and rigid
transformations. Later, Chui and Rangarajan (2003, 2000) pre-
sented TPS-RPM, its extension to non-rigid transformations.

Graph matching approaches allow for neighboring relations be-
tween points into the point-set registration problem. Graduated
Assignment by Gold and Rangarajan (1996) is a remarkable graph
matching method using Softassign. Cross and Hancock (1998) pre-
sented an approach for graph matching and point-set alignment
using the EM algorithm that was defined for affinities and projec-
tivities. One limitation of this approach is the high computational
demand of the dictionary-based structural model. Luo and
Hancock (2003) proposed an EM-like approach for graph matching
and point-set alignment based on a cross-entropy measure. They
proposed a model of structural errors based on a Bernoulli
distribution. This model was defined for rigid-body
transformations.

We propose a joint structural graph matching and point-set reg-
istration method whose main contributions are the following:

� We try to bridge the gap between the EM-based and the Softas-
sign-based approaches by formulating the graph matching
problem within a principled statistical framework, while bene-
fiting from the desirable properties of the Softassign and deter-
ministic annealing ensemble.
� Correspondence problem is approximated as a succession of lin-

ear assignment problems which are solved using Softassign.
This way, we are able to use continuous correspondence vari-
ables as opposed to other approaches that use discrete ones
(Cross and Hancock, 1998; Luo and Hancock, 2003).
� Outlier rejection is modeled as a smooth assignment to the null

node within the annealing procedure.
� The proposed model can be easily adapted to allow only for geo-

metric or structural information. We show how it can be seen as
a more general framework with clear connections to other well-
known methods.
� Although the proposed method deals with rigid transformations

we show how it can be embedded into a non-rigid deformation
procedure thus obtaining similar or better performances than
state-of-the-art non-rigid registration methods.

The outline of this paper is the following. In Section 2 we formu-
late the matching problem as one of mixture modeling with miss-
ing data and propose our mixture model. In Section 3 we derive the
EM algorithm for our model. Section 4 presents the methodology
used to reject outliers. In Section 5 we highlight parallelisms of
the proposed method with some other existing methods. In Section
6 we present some experiments and results, and finally in Section 7
conclusions are given.

2. A mixture model

Consider two graph representations G ¼ ðU;D;XÞ and H ¼
ðV;M;YÞ extracted from two images.

The node-sets U ¼ fua; a 2 Ig and V ¼ fva; a 2 J g contain the
symbolic representations of the nodes, where I ¼ 1; . . . ; jUj and
J ¼ 1; . . . ; jVj are their index-sets.

The vector-sets X ¼ fxa; a 2 Ig and Y ¼ fya; a 2 Jg, contain
the column vectors xa ¼ xV

a ; x
H
a

� �> and ya ¼ yV
a ; y

H
a

� �> of the two-
dimensional coordinates (vertical and horizontal) of each node,
where > denotes the transpose operator.

The adjacency matrices D and M contain the edge-sets,
encoding some kind of relation between pairs of nodes
(e.g., connectivity or spatial proximity). Hence, Dab ¼

1 if ua and ub are linked by an edge
0 otherwise

�
(the same applies for

Mab).
We use continuous correspondence indicators S so, we denote

as saa 2 S, the probability of node ua 2 U being in correspondence
with node va 2 V.

It is satisfied thatX
a2J

saa 6 1; a 2 I ð1Þ

where, 1�
P

asaa is the probability of node ua being an outlier.
Our aim is to recover the correspondence indicators S and the

alignment parameters U that maximize the observed-data likeli-
hood of the data-graph PðGjS;UÞ. Within this setting, constraints
on the data-graph G are evaluated on the model-graph H. To make
this problem tractable, we introduce the hidden variables, namely,
the corresponding model graph nodes va 2 V.

By assuming that the observations are independent and identi-
cally distributed, the observed-data likelihood writes

PðGjS;UÞ ¼
Y
a2I

X
a2J

Pðua;vajS;UÞ ð2Þ

Following a similar development than (Luo and Hancock, 2001)
we factorize, using the Bayes rules, the complete-data likelihood in
the right hand side of Eq. (2) into terms depending on individual
correspondence indicators, in the following way.

Pðua;vajS;UÞ ¼ Kaa

Y
b2I

Y
b2J

Pðua;vajsbb;UÞ ð3Þ

where Kaa ¼ ½1=Pðuajva;UÞ�jIj�jJ j�1. If we assume that conditional
dependence of data-graph node ua can only be taken into account
in the presence of the correspondence matches S, then
P(uajva,U) = P(ua). Further assuming equiprobable priors P(ua), we
can safely discard these quantities in the maximization of Eq. (2),
since they do not depend either on S nor U.

We propose a measure for the complete-data likelihood of Eq.
(3) that combines a model of structural errors based on a Bernoulli
distribution augmented with a model of geometric errors based on
a Gaussian distribution.

With regards to the structural relations, Luo and Hancock
(2001) proposed to model the likelihood of an observed relation gi-
ven the hypothesis on the correspondences using a Bernoulli distri-
bution with parameters S. This is, given two corresponding pairs of
nodes ua; ub 2 U and va; vb 2 V, they assumed that there will be
edge-discordance (i.e., Dab = 0 _Mab = 0) with a fixed (low) proba-
bility of error Pe. Otherwise, there will be edge-concordance with
probability 1 � Pe. This is,

Pðua;vajsbbÞ ¼
ð1� PeÞ if Dab ¼ 1 ^Mab ¼ 1 ^ sbb ¼ 1
Pe otherwise

�
ð4Þ

With regards to the geometrical measurements, it is reasonable
to consider that point-position errors between corresponding
points follow a Gaussian density. In the case of no correspondence,
we use a fixed probability q that will model the outlier process.
This is,

Pðubjsbb;UÞ ¼
PðUÞbb if sbb ¼ 1

q otherwise

(
ð5Þ

where PðUÞbb is a Gaussian measurement on the point-position errors
with parameters U. This is,

PðUÞbb ¼
1

2pjRj1=2 exp �1
2
kxb � T ðyb; UÞk2

R

� �
ð6Þ

where T ðyb; UÞ represents the geometric transformation of model
point yb according to alignment parameters U, and kdk2

R ¼ d>R�1d
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