Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Review

Invited Review: Some recent developments in the atomic-scale characterization of structural and transport properties of ceria-based catalysts and ionic conductors

Masatomo Yashima*

Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo 152-8551, Japan

ARTICLE INFO

Article history: Available online 19 May 2015

Keywords: Ceria-zirconia catalyst Ceria-based oxide-ion conductor Nanoparticles Phase transition Crystal structure Maximum-entropy method (MEM) Nuclear density Ion-diffusion pathway Phase diagram Bond valence

ABSTRACT

Ceria-based materials are utilized as automotive exhaust catalysts for the removal of noxious compounds, as catalysts for reforming ethanol and methane to produce hydrogen in fuel cells, as materials for solar-energy-to-fuel conversion, and as cathode, anode, and electrolyte materials in solid oxide fuel cells (SOFCs). The present paper is a critical review on the atomic-scale characterization of oxide-ion diffusion pathway, the existing phases, the phase transformations, "metastable" and stable phase diagrams, and oxygen storage capacity (OSC) of ceria-based materials. "Metastable," compositionally (x) homogeneous t'- and t"-ceria-zirconia $Ce_xZr_{1-x}O_2$ solid solutions (0.2 < x < 0.9) are key materials to obtain a high OSC, leading to high catalytic activity. Here, the t'- and t"-forms are unstable compared to the two-phase mixture of stable ZrO₂-rich tetragonal and CeO₂-rich cubic (or t") phases, but are stable in the partitionless, compositionally homogeneous phases. The axial ratio, c/a_F where the subscript F represents the pseudofluorite lattice, of the t'-form is larger than unity, while the c/a_F ratio of the t''-form equals unity. Formation of the t'- and t"-Ce_xZr_{1-x}O₂ is depicted in the "metastable" phase diagram consisting of allotropic phase boundaries in the CeO₂–ZrO₂ system and is explained using the schematic Gibbs energy–composition (G-x) diagram. The composition (CeO₂ content x)-induced t'-t" transition in Ce_xZr_{1-x}O₂ is discrete and of first order. The c-t" phase transition of $Ce_x Zr_{1-x}O_2$ is induced by the oxygen displacement from the regular fluorite position 1/4, 1/4, 1/4, 1/4 along the *c*-axis. The c-t["] transition is continuous and might be of higher order. The c-t" phase boundary at room temperature is located at around x = 0.85 - 0.9 in both bulk and nanocrystalline Ce_xZr_{1-x}O₂. The tetragonal symmetry of compositionally homogeneous nano-sized $Ce_{0.5}Zr_{0.5}O_2$ in air is retained up to 1176 K. The c/a_F ratio, and the oxygen displacement are smaller in the nanocrystalline $Ce_{0.5}Zr_{0.5}O_2$ than in bulk $Ce_{0.5}Zr_{0.5}O_2$. Bulk oxide-ion diffusion is an important step of oxygen storage and release in ceria-based catalysts, and the oxide-ion diffusivity is essential for high OSC and efficiency of the SOFCs and the solar-energy-to-fuel conversion. The present paper reviews the atomic-scale characterization of ion diffusion in ceria-based catalysts and fluorite-type ionic conductors and discusses the correlation between their bulk ion diffusivity and structural properties. The spatial distributions of neutron scattering length density, bond valence sum (BVS), and bond-valence-based energy (BVE) in the unit cell of tetragonal ceria-zirconia compounds, cubic fluorite-type ceria-based materials, and other fluorite-structured compounds such as $Ce_{0.5}Zr_{0.5}O_2$, CeO_2 , $ceria-yttria Ce_{0.97}Y_{0.07}O_{1.96}$, bismuth oxide solid solution δ -Bi_{1.4}Yb_{0.6}O₃, and copper iodide α -CuI indicate the three-dimensional network of curved $\langle 1\,0\,0\rangle_F$ ion diffusion pathways and anisotropic $\langle 1\,1\,1\rangle_F$ thermal vibration of mobile ions, which are responsible for the bulk ion diffusion and conduction. Here, the subscript F denotes the pseudofluorite lattice. The BVE distributions of Ce_{0.5}Zr_{0.5}O₂ and CeO₂ indicate lower activation energy and higher mobility of oxide ions in $Ce_{0.5}Zr_{0.5}O_2$ compared with CeO_2 .

© 2015 Elsevier B.V. All rights reserved.

* Tel.: +81 3 57342225. *E-mail address:* yashima@cms.titech.ac.jp

http://dx.doi.org/10.1016/j.cattod.2015.03.034 0920-5861/© 2015 Elsevier B.V. All rights reserved.

Contents

1.	Introduction	4
2.	Oxygen storage capacity (OSC) and factors affecting the OSC of ceria-based catalysts	5
3.	Ceria–zirconia as an oxygen storage component (1): existing phases, and the "metastable" and stable phase diagrams in the	
	CeO ₂ -ZrO ₂ system	5
4.	Ceria-zirconia as an oxygen storage component (2): crystal structure change and phase transformation	7
5.	Ceria-zirconia as an oxygen storage component (3): correlation between the crystal structure and oxygen diffusivity	11
6.	Ceria-zirconia as an oxygen storage component (4): visualization of the positional disorders and diffusion pathways of oxide ions	11
	6.1. Maximum-entropy method (MEM) and bond valence method to investigate the positional disorders and diffusion pathways of	
	oxide ions in ionic conductors and catalysts	11
	6.2. Positional disorders and diffusion pathways of oxide ions in cubic bulk $Ce_{0.5}Zr_{0.5}O_2$ and CeO_2	13
	6.3. Positional disorders and diffusion pathways of oxide ions in tetragonal nanocrystalline, compositionally homogenous Ce _{0.5} Zr _{0.5} O ₂	15
7.	Ceria-yttria and fluorite-type compounds as ionic conductors: visualization of diffusion pathways of mobile ions	15
8.	Concluding remarks	17
9.	Prospects and future issues	17
	Acknowledgements	18
	References	18

1. Introduction

Ceria-based materials such as CeO_2 , $Ce_xZr_{1-x}O_2$, and $Ce_{1-x}R_xO_{2-x/2}$ (R: rare earth) are of vital importance as (1) automotive exhaust catalysts for the removal of noxious compounds, (2) catalysts for reforming ethanol and methane to produce hydrogen in fuel cells, (3) materials for solar-energy-to-fuel conversion, and (4) cathode, anode, and electrolyte materials in solid oxide fuel cells (SOFCs) [1–19]. The success of ceria-based materials is mainly ascribed to the unique combination of high oxide-ion diffusivity coupled with the ability to shift easily between reduced Ce³⁺ and oxidized Ce⁴⁺ states. The oxygen storage/release and redox properties of ceria-based catalysts are considered to play key roles in their catalytic activity. Fig. 1 shows the steps in the oxygen storage/release process [18,19]. The bulk oxide-ion diffusion in ceria-based catalysts is an important step in the oxygen storage/release process (fourth step: (4) in Fig. 1). The bulk oxide-ion conductivity in ceria-based materials for the cathode, anode, and electrolyte of SOFCs is essential for the energy conversion efficiency. Therefore, atomic-scale understanding of the oxide-ion diffusion mechanism in ceria-based materials is required for further developments of ceria-based catalysts and SOFC materials [20-23].

In conventional structure analyses such as Rietveld refinements, the unit-cell parameters, occupancy factors, atomic coordinates, and atomic displacement parameters (ADPs) are refined (see

Fig. 1. Steps in the oxygen storage/release process of ceria-based catalysts. Step (1): Adsorption and dissociation of O_2 on the metal particles. Step (2): Direct exchange of O_2 from the gas phase with the O atoms of the ceria-based catalyst. Step (3): Diffusion and spillover of O atoms on the surfaces of ceria-based catalyst and on the metal catalyst. Step (4): Bulk oxide-ion diffusion in the ceria-based catalyst.

Table 1 as an example [23]). In the conventional structure analysis, the thermal vibration of an atom is usually approximated by the isotropic and/or anisotropic ADPs (thermal ellipsoid) with a Gaussian distribution. However, this is not sufficient to express the positional disorders and diffusion pathways of mobile ions, which are important for understanding the ion-diffusion mechanism at the atomic scale (Fig. 2a). On the contrary, the precise structure analysis of neutron and X-ray powder diffraction data by the maximum-entropy method (MEM) enables the determination of the continuous and complicated spatial distribution of mobile ions in the crystal lattice of ceria-based materials and of other ionic conductors (Fig. 2b) [17,20–22,24] (see the details in Section 6.1).

Fig. 2. (a) Refined crystal structure of $Ce_{0.927}Y_{0.073}O_{1.962}$ at 1434 °C [17,20]. (b) Isosurface of the neutron scattering length density distribution of $Ce_{0.927}Y_{0.073}O_{1.962}$ at the same temperature [17,20]. Reprinted from Refs. [17,24] with permission from Imperial College Press and Ceramic Society of Japan.

Download English Version:

https://daneshyari.com/en/article/53418

Download Persian Version:

https://daneshyari.com/article/53418

Daneshyari.com