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a b s t r a c t

We begin by showing that the modified partition coefficient (MPC) is an average Euclidean distance between

membership degrees and the centre of the fuzzy c-partition. Subsequently, we construct alternative MPCs

using several other measures of dissimilarity and examine how differently they perform when compared with

the original proposal. Empirical evidence shows that the MPC based on a Chernoff’s measure of divergence is

more robust to the initial conditions of the fuzzy c-means algorithm.
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1. Introduction

Consider {x1, x2, . . . , xN} a set N data points represented by n-

dimensional feature vectors, i.e. xk ∈ R
n, 1 ≤ k ≤ N. We represent this

set as an n × N matrix X. Each column of this matrix represents a data

point, and the rows of X account for the n features. By assumption, X

can be decomposed into unknown c ∈ (
1, N

)
fuzzy clusters forming a

fuzzy c-partition. A fuzzy c-partition can be appropriately represented

as a c × N matrix denoted by U = [μik], and referred to as partition

matrix. We also assume this matrix is given as an output of the algo-

rithm used to decompose X. Its generic elementμik is the membership

degree of xk in fuzzy cluster i. The columns of U, i.e. the vectors

μk = (μ1k, μ2k, . . . , μck) (1)

for 1 ≤ k ≤ N, belong to the unit simplex Sc,

Sc =
{
(g1, . . . , gc): gi ≥ 0,

c∑
i=1

gi = 1

}
(2)

This convex set is a geometrical counterpart of the fuzzy c-partition.

The cluster full members or prototypes are represented by the

canonical basis vectors of R
c, and consequently locate at the vertices

or extreme points of Sc. We call

C =
(

1

c
,

1

c
, · · · ,

1

c

)
(3)

the centre of the fuzzy c-partition or, equivalently, of Sc; it

corresponds to the fuzziest point [10].

Now suppose we have a collection of fuzzy c-partitions of X, e.g. c =
2, 3, . . ., and aim to evaluate how well each partition fits the data; in
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other words, we want to know how to select the best estimate among

candidates that partition X. Bezdek [5] proposes a scalar measure or

cluster validity index, called partition coefficient (PC), given by

VPC (c) = 1

N

N∑
k=1

c∑
i=1

μ2
ik (4)

to assess competing fuzzy partitions of X. It can be shown that VPC ∈[
1
c , 1

]
. The lower extreme is attained if U =

[
1
c

]
, while the valueVPC =

1 holds if the partition is hard, i.e. when all data points are mapped

into the vertices of the unit simplex Sc. Pal and Bezdek [18] interpret

this verbally, noting that VPC measures how far U is from being a

crisp partition matrix. The higher the values of VPC, the harder U

is. Despite its appealing conceptual construction and simplicity, the

indexVPC has the drawback of tending to increase monotonically with

the number of clusters c.

Dave [9] proposed a modification of (4), by means of a linear trans-

formation, to eliminate that dependency of VPC on c. He refers to the

new measure thus obtained as modified partition coefficient (MPC),

which is expressed as

VMPC (c) = c

c − 1
VPC − 1

c − 1
(5)

and is similar to the clustering performance measure of [3]. The range

ofVMPC is the unit interval [0, 1], whereVMPC = 0 corresponds to max-

imum fuzziness and VMPC = 1 to a hard partition. This feature makes

VMPC additionally more attractive than the Bezdek’s PC to compare

different cluster solutions for the data matrix X, since it does not de-

pend on the number of clusters as does the range ofVPC (4). In general,

the optimal number of clusters is found by solving maxc VMPC (c).
During our research we found that the MPC (5) can be obtained in

a more appealing way, which allows this performance measure to be

looked on as a distance of cluster memberships to the fuzziest point,

as follows.
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Proposition 1. The modified partition coefficient (5) is an average of

a normalised squared Euclidean distance of membership degree vectors

(1) to the centre of the fuzzy c-partition (3).

Proof. Note that the squared Euclidean distance to the centre of the

unit simplex Sc (2) of any vertex is equal to 1 − 1
c = c−1

c . Thus, the

squared Euclidean distance between any membership degree vector

and the centre, multiplied by c
c−1 , gives a number in the range [0, 1],

i.e.

c

c − 1

c∑
i=1

(
μik − 1

c

)2

= c

c − 1

c∑
i=1

μ2
ik−

1

c − 1

Summing this quantity for all data points, and dividing by N, gives the

MPC index (5) proposed by Dave [9].

In other words, the fuzzy c-partition that best represents X is the

one that, in general, leads the data points the furthest from the cen-

tre of Sc. This new perspective of MPC provided by Proposition 1

raises the following question: is there any dissimilarity or divergence

measure we can use instead of the Euclidean distance to construct

alternative MPCs that better addresses the cluster validation prob-

lem? Our study attempts to answer this question. In what follows,

we revisit divergence measures in Section 2 and associate each one

with a cluster validity index; in Section 3 we carry out an empirical

study using first synthetic data and then datasets from UCI Machine

Learning Repository [2]; and finally Section 4 concludes.

2. Measures of divergence

2.1. An overview

The similar nature of membership degrees and discrete probabil-

ities makes it possible to use the theoretical measures of divergence

developed to compare probability distributions in the present case.

The problem can also be regarded as one that compares two multi-

nomial populations [7], where each data point with the associated

membership degree vector acts as a population, and is compared to

the reference population, i.e. the centre of the fuzzy c-partition, C
(3). We should then select the partition that generally diverges most

from the reference. We stress that we are deliberately using the term

divergence instead of distance, because not all measures of dissimilar-

ity considered here satisfy all the conditions of a distance function.

While the latter can always be considered a divergence measure, the

converse is not necessarily true [21]. In what follows, we present an

overview of a number of divergence measures for two generic multi-

nomial probabilities; then we construct new indices as realisations

of MPC for each of such measures. The papers [1,4,21] are the main

sources of the first part.

Most coefficients of divergence between probability distributions

considered in this study are special cases of Ali-Silvey class of informa-

tion theoretic measures. They are derived from the general formula

[1]

d
(
f1, f2

) = ϕ

{
E1

[
�

(
f2

f1

)]}
(6)

where f1 and f2 are two continuous probability density functions,

�(.) is a continuous real convex function in R
+, ϕ (.) an increas-

ing real function on R, and E1 denotes the expectation with respect

to f1. The formula (6) gives an account of how f2 diverges from

f1. In this context, we will however consider the discrete versions

of divergence measures, and this corresponds to replacing the sym-

bol of integral by that of summation appropriately. So we consider

two generic multinomial populations with the probability vectors

p1 = (p11, p21, . . . , pc1) and p2 = (p12, p22, . . . , pc2), and present sev-

eral ways to calculate d (p1, p2). Clearly, the parameter space of these

vectors is the unit simplex Sc (2), i.e. p1, p2 ∈ Sc.

2.2. Examples of divergence measures

With the exception of the arccosin measure [7] below, the coef-

ficients of divergence we present herein result from specifying the

functions ϕ and � in (6). Our list is by no means exhaustive. Vari-

ous available measures of divergence (e.g. [15]) are members of this

generic class, as shown below. The usual nomenclature for the contin-

uous distributions is maintained for the case of discrete probabilities.

We notice that whenever the logarithm function is involved, it should

be intended as natural logarithm; we use the result lim
a→0

a log(a) = 0

to set the product a log(a) to zero, when a = 0.

(a) Kullback and Leibler [15] measure of discriminatory information:

�(a) = − log (a); ϕ (a) = a;

d (p1, p2) =
c∑

i=1

pi1 × log

(
pi1

pi2

)
(7)

This is the most popular measure of divergence between two prob-

ability distributions. We note that the coordinates of p2 must be

positive.

(b) Chernoff [8] measure of discriminatory information: �(a) =
−a1−r; ϕ (a) = − log (−a), where r ∈ (

0, 1
)

is an exponent param-

eter;

d (p1, p2) = − log

(
c∑

i=1

pr
i1 × p1−r

i2

)
(8)

This measure is very flexible as the value of the exponent param-

eter r can be adjusted for particular needs. Dividing (8) by 1 − r

leads to Rényi’s [19] divergence1 of order r.

(c) Kolmogorov’s variational distance: �(a) = |1 − a|; ϕ (a) = 1
2 a;

d (p1, p2) = 1

2

c∑
i=1

|pi1 − pi2|

(d) Hellinger distance: �(a) = (√
a − 1

)2
; ϕ (a) = 1

2 a;

d (p1, p2) = 1

2

c∑
i=1

(√
pi1 − √

pi2

)2

This is also referred to as squared Hellinger distance.

(e) Bhattacharyya’s measures of divergence: indeed we can consider

two different measures. One is referred to as Bhattacharyya log-

arithm and the other can be called Bhattacharyya arccosin [16].

The former is a special case of Chernoff’s measure (8) with r = 0.5

and is treated as such. The arccosin measure proposed in [7] does

not belong to Ali-Silvey class referred to above (6), and is given by

d (p1, p2) = arccos

(
c∑

i=1

(√
pi1 × pi2

))
(9)

The author calls (9) the angle of divergence between two popula-

tions, as represented by p1 and p2.

2.3. Alternative MPCs

We have learned from the Proposition 1 that the construction of

MPC [9] requires the calculation of the divergence of any extreme

point of the unit simplex Sc to the centre C (3) of this convex set.

The resultant quantity is then used as the normalisation factor for the

divergence between the centre and membership degree vector μk.

Summing this measure for all data points, and dividing by N, gives

an alternative MPC. Herein we exemplify how it can be obtained for

the case of Chernoff’s measure. The procedure is exactly the same

1 In the original work the author uses the logarithm of base 2.
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