
Pattern Recognition Letters 56 (2015) 22–29

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Learning graph-matching edit-costs based on the optimality of the

oracle’s node correspondences✩

Xavier Cortés, Francesc Serratosa∗

Universitat Rovira i Virgili Tarragona, Catalonia, Spain

a r t i c l e i n f o

Article history:

Received 5 June 2014

Available online 31 January 2015

Keywords:

Graph matching

Graph edit distance

Learning edit costs

Hamming distance

a b s t r a c t

The Graph edit distance is the most used distance between attributed graphs and it is defined as the minimum

amount of required distortion to transform one graph into the other. Six Edit operations define this distortion:

insertion, deletion and substitution of nodes and arcs. To quantitatively determine the degree of distortion,

a penalty cost to each edit operation is defined according to the amount of distortion that it introduces in

the transformation. Although a proper definition of these costs is a cornerstone of classification or clustering

applications, little research has been done to automatically find them. Usually, they are established through a

manual validation process. This paper presents an optimization method to learn the value of these costs such

that the Hamming distance between an oracle’s node correspondence and the automatically correspondence

is minimized. Experimental validation shows that the clustering and classification experiments drastically

increase their accuracy with the automatically learned costs respect some usual cost values.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graphs refer to a collection of nodes and edges that connect pairs

of nodes. Attributed graphs are graphs in which some attributes

are added on nodes and edges to represent local information or

characterization. Attributes on nodes and edges represent unary and

binary relations of local parts of the objects at hand. Attributed graphs

have been widely used in several fields to represent objects composed

of local parts and relations between these parts [1–3]. Given two

graphs, error-tolerant graph matching [4] obtains a distance value

between the involved graphs and a correspondence between their

nodes.

Given a pair of attributed graphs, several distance measures be-

tween them have been presented [5–7] but probably the most well

known distance is the graph edit distance [4,8,9]. This distance mea-

sure is defined as the minimum amount of required distortion to

transform one graph into the other. To this end, a number of distor-

tion or edit operations, consisting of insertion, deletion and substitu-

tion of both nodes and edges are defined. To quantitatively evaluate

the degree of distortion, edit cost functions are introduced. The basic

idea is to assign a penalty cost to each edit operation according to the

amount of distortion that it introduces in the transformation.

✩ This paper has been recommended for acceptance by R. Davies
∗ Corresponding author. Tel.: +34 977558507; fax: +34 977558710.

E-mail address: francesc.serratosa@urv.cat (F. Serratosa).

An interesting question arises in this context: given the attributed

graphs that represent some objects, how we gauge the importance of

each edit operation? That is, how we decide the penalty cost? Suppose

we have an application that we want to match nodes of both graphs

only if their attributes are almost similar, then, the penalty cost of

substituting nodes or edges would have to be higher than insertion

or deletion nodes and edges. Contrarily, if we wish almost all nodes

to be mapped to the nodes of the other graph, then, the penalty cost

of substitution would have to be very low. Usually, these weights are

manually set at the validation process and little research has been

carried out to automatically decide them.

Table 1 lists the five papers that have been published related to

learning these edit costs. We have found two optimization functions

(also called predictors). The recognition ratio given a classified test

set and the average Hamming distance between an oracle’s corre-

spondence and the automatically deducted correspondence. One of

the drawbacks of the first function is that graphs in the dataset need

to be classified. This is not the case of the second function but it is

needed an oracle’s correspondence, therefore, the learning elements

in the dataset must be composed of two graphs and an oracle’s corre-

spondence between nodes. Note that the oracle’s correspondence is

the labeling ground truth between nodes of the involved graphs.

Another important feature is the type of costs the learning algo-

rithm obtains. For instance, methods in [10] and [11] obtain a self

organizing map (SOM) and a probability density function (PDF), re-

spectively. Therefore, in these cases, classical graph matching algo-

rithms have to be tuned to be applied on these learning methods

since these algorithms assume edit costs are real numbers. Methods

http://dx.doi.org/10.1016/j.patrec.2015.01.009

0167-8655/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.patrec.2015.01.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.01.009&domain=pdf
mailto:francesc.serratosa@urv.cat
http://dx.doi.org/10.1016/j.patrec.2015.01.009


X. Cortés, F. Serratosa / Pattern Recognition Letters 56 (2015) 22–29 23

Table 1

Papers published about graph matching learning.

Ref. Year Optimization function Costs Optimization algorithm

[10] 2005 Recognition ratio SOM Self organizing maps (SOM) [15]

[11] 2007 Recognition ratio PDF Expectation minimization [16]

[12] 2009 Hamming distance Substitution weights Bundle method [17]

[13] 2011 Hamming distance Insertion and deletion Interactive labeling space [18]

[14] 2012 Hamming distance

Recognition ratio

Substitution weights Spectral [19]

[12] and [14] assume nodes and edges have several attributes (for

instance features obtained by SIFT descriptors) and these methods

obtain a weight for each feature. In these cases, there is not a unique

substitution cost on nodes and on edges but a vector of substitution

weights, one for each feature. Moreover, insertion and deletion costs

are not learned. Finally, method described in [13] computes the sub-

stitution, insertion and deletion costs on nodes and edges considering

the interaction of a human. Contrarily of methods [12] and [14], this

method assumes a unique substitution costs on nodes and edges.

In this paper, we present a method to learn the real numbers for

the insertion and deletion costs on nodes and edges without a hu-

man interaction such that the Hamming distance between a ground

truth node correspondence and the automatically obtained corre-

spondence is minimized. This is because, in some applications, graphs

in the reference and test databases are not split in classes and so it is

not valid to minimize the recognition ratio. This is the case of some

graph retrieval applications [1], in which the aim is to find similar

graphs without a previous classification. Moreover, there are some

graph databases [39] such that nodes and edges have only one or any

attributes. In these cases, it has non-sense to learn the substitution

weights for each feature as in [12] and [14] but it is crucial to learn the

best combinations of insertion and deletion costs on nodes and edges

as unique real numbers. Finally, we want the classical graph matching

algorithms [2,3] to be applied on our obtained costs. For this reason,

the computed values have to be real numbers and therefore, meth-

ods [10] and [11] are not valid. In the next section, we summarize

the graph edit distance and the Hamming distance. In Section 3, we

explain our optimization method and in Section 4, we show our ex-

perimental validation. We conclude the paper in Section 5.

2. Graph edit distance and Hamming distance

2.1. Attributed graph

An attributed graph (over Δv and Δe) is defined by a tuple G =
(�ν,�e, γv, γe), where �v = {va | a = 1, . . . , n} is the set of nodes,

�e = {eab | a, b ∈ 1, . . . , n} is the set of edges, γv : �v → Δv assigns

attribute values to nodes and γe : �e → Δe assigns attribute values

to edges. The order of graph G is n.

2.2. Error-tolerant graph matching and graph edit distance between

two attributed graphs

Error-tolerant graph matching is the problem of finding a distance

value and a node correspondence between two attributed graphs.

Let G = (�ν,�e, γv, γe) and G′ = (�′
v,�′

e, γ
′

v, γ ′
e) be two attributed

graphs of initial order n and m. To allow maximum flexibility in the

matching process, graphs are extended with null nodes [4] to be of

order n + m. We refer to null nodes of G and G′ by �̂ν ⊆ �ν and

�̂′
v ⊆ �′

v respectively. Let T be a set of all possible bijections between

two sets �ν and �′
v. We define the non-existent or null edges by

�̂e ⊆ �e and �̂
′
e ⊆ �

′
e. Bijection f : �ν → �

′
v, assigns one node of

G to only one node of G′. The bijection between edges is defined

accordingly to the bijection of their terminal nodes.

Graph edit distance [4,8,9] is the most used method to solve the

error-tolerant graph matching. As commented in the introduction,

the distance is defined as the minimum amount of required distortion

to transform one graph into the other through inserting, deleting

and substituting nodes and edges. Moreover, some penalty costs are

assigned to each edit operation. Section 2.2 of [20] properly explains

this distance with a toy example. Deletion (Insertion) operations are

transformed to assignations in f of non-null nodes of the first (second)

graph to null nodes of the second (first) graph. Substitutions simply

indicate node-to-node assignations in f . Using this transformation,

given two graphs, G and G′, and a bijection between their nodes, f ,

the graph edit cost is given by (Eq. 2 in [20]):

EditCost(G, G′, f ) =
∑

va∈�ν−�̂ν

v′
i∈� ′

ν−�̂ ′
ν

Cvs(va, v′
i)+

∑
va∈�ν−�̂ν

v′
i∈�̂ ′

ν

Cvd(va, v′
i)

+
∑

va∈�̂ν

v′
i∈� ′

ν−�̂′
ν

Cvi(va, v′
i)+

∑
eab∈�e−�̂e

e′
ij∈� ′

e−�̂′
e

Ces(eab, e′
ij)

+
∑

eab∈�e−�̂e

e′
ij∈�̂ ′

e

Ced(eab, e′
ij)+

∑
eab∈�̂e

e′
ij∈� ′

e−�̂′
e

Cei(eab, e′
ij)

Being f (va) = v′
i and f (vb) = v′

j (1)

where Cvs is the cost of substituting node va of G by node v′
i of G′, Cvd

is the cost of deleting node va of G and Cvi is the cost of inserting node

v′
i of G′. Equivalently for edges, Ces is the cost of substituting edge eab

of graph G by edge e′
ij of G′, Ced is the cost of assigning edge eab of G

to a non-existing edge of G′ and Cei is the cost of assigning edge e′
ij of

G′ to a non-existing edge of G. The cost of mapping two null nodes or

null edges is always zero. With these costs, the Graph Edit distance is

defined as the minimum cost under any bijection in T [20]:

EditDist(G, G′) = min
f∈T

EditCost(G, G′, f ) (2)

Finally, the optimal correspondence ˙f is the one that obtains the

minimum cost,

˙f = argmin
f∈T

EditCost(G, G′, f ) (3)

Using these definitions, the graph distance depends on Cvs, Cvd,

Cvi, Ces, Ced and Cei costs and several definitions of these costs have

been published. There are two main options to define the costs on

substituting nodes and edges, Cvs and Ces. The first one considers

cost Cvs ∈ {0, Kvs} where Cvs(va, v′
i) = Kvs if dist(va, v′

i) > Threshold

otherwise Cvs = 0 (similarly for Ces). Function dist is defined as a

distance over the domain of the attributes. Specific examples of

this cost can be found in [21–23]. The second one corresponds to

the case where Cvs(va, v′
i) ∈ R or Ces(va, v′

i) ∈ R. In this case, node

and edge substitution costs depend on the attributes of the nodes

and edges and possibly on some other parameters as shown in

[12,24,25], among others. Functions Cvd, Cvi, Ced and Cei, are usually

defined as a constant, but in some cases depend on node or edge

attributes [26–28].

Several specific definitions of Cvs, Cvd, Cvi, Ces, Ced and Cei costs

have been studied, which are summarized in Table 2. We propose



Download English Version:

https://daneshyari.com/en/article/534198

Download Persian Version:

https://daneshyari.com/article/534198

Daneshyari.com

https://daneshyari.com/en/article/534198
https://daneshyari.com/article/534198
https://daneshyari.com

