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a b s t r a c t

In this paper, we propose a sparse coding tracking algorithm based on the Cartesian product of two sub-

codebooks. The original sparse coding problem is decomposed into two sub sparse coding problems. And the

dimension of sparse representation is intensively enlarged at a lower computational cost. Furthermore, in

order to reduce the number of L1-norm minimization, ridge regression is employed to exclude the substantive

outlying particles according to the reconstruction error. Finally the high-dimension sparse representation

is put into the classifier and the candidate with the maximal response is considered as the target. Both

qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the

proposed tracking algorithm performs favorably against several state-of-the-art algorithms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Visual tracking has long been playing a critical role in numerous

applications such as surveillance, military reconnaissance, motion

recognition and traffic monitoring, to name a few [1]. While much

progress has been made within the last decades, it still remains

challenging in many scenarios including pose variation, illumination

change, partial occlusion, motion blur, background clutter and so on.

In the past few years, variation and extension of L1-norm mini-

mization have been applied to many computer vision tasks, including

face recognition, image super-resolution, denoising, inpainting and

image classification [2]. Inspired by the success of sparse representa-

tion in face recognition [3], many researchers develop a robust visual

tracking framework by casting the tracking as a sparse approxima-

tion on the codebook [4]. A thorough review can refer to [5]. The

sparse coding visual tracking algorithms can be classified into two

categories, generative model and discriminative model. Both of them

require obtaining the sparse representation firstly. And the approach

to sparse representation is a L1-norm minimization problem, which

can be solved by homotopy method, gradient projection method, it-

erative shrinkage-thresholding method, interior-point method and

so on [6]. As we know sparse coding is a competitive method given

sufficiently large codebooks [7]. However, sparse coding is compu-

tationally expensive and the computational cost increases sharply

with the size of the codebook. So its power is mostly limited by the

size of the codebook in practice, especially for discriminative sparse
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coding tracking algorithm. So many researchers have to make a trade-

off between the speed and the discriminative ability. Given a proper

computational cost, how to enlarge the codebook to improve the dis-

criminative power is urgent to be solved.

In this paper we propose a robust product sparse coding tracking

algorithm. And the codebook size is increased in product manner at a

lower computational cost than direct operation on the Cartesian prod-

uct of two sub-codebooks [7]. The original sparse coding problem is

decomposed into two sub sparse coding problems. Each codeword in

the codebook is divided into two equal parts. Then the sparse repre-

sentation of the candidate can be obtained on the two sub-codebooks

simultaneously. And the final sparse representation can be calculated

via the product of the two obtained sparse coding coefficients. Finally

the high-dimension sparse representation is input into the SVM clas-

sifier and the candidate with the maximal score is regarded as the

target. In order to reduce the number of L1-norm minimization, ridge

regression is adopted to exclude the candidates with big reconstruc-

tion error at a lower computational cost. After that, tracking is led by

the Bayesian state inference framework in which a particle filter is

used for propagating sample distributions over time. Numerous ex-

periments on various challenging sequences show that the proposed

algorithm performs favorably against state-of-the-art methods and

the tracker based on product sparse coding is superior to the original

sparse coding tracker under the same condition.

The rest of the paper is organized as follows. In Section 2, we be-

gin with summarizing the related work on sparse coding tracking. In

Section 3, we offer the details of the sparse representation based on

product sparse coding. Section 4 is the initialization and generaliza-

tion analysis of the SVM classifier used in our paper. The integration

of our proposed model in particle filter framework for tacking is de-

scribed in Section 5. Qualitative and quantitative evaluations of our
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tracker on a number of challenging videos are presented in Section 6.

Section 7 is the conclusion of our paper.

2. Related work

The computational complexity of the sparse coding visual tracking

based on L1-norm minimization is o(Nm2n3/2), where N is the number

of the candidates, m is the codeword dimension, n is the number of

codeword in the codebook [5]. So two kinds of method can be utilized

to reduce the computation complexity. One is to reduce the compu-

tational cost of each L1-norm minimization. The other is to reduce the

number of L1-norm minimization. Instead of reducing the dimension

by down sampling the cropped images, Liu et al. proposed a feature

selection method to choose low dimension but more discriminative

features [8]. In Wu et al., to reduce the dimension of the linear repre-

sentation, they proposed the covariance matrix to represent the target

and the candidates [9]. In Li et al., they exploit the restricted isom-

etry property to reduce the dimension of the feature by multiplying

hashing matrix simultaneity [10]. In Zhong et al., they try to get the

projection matrix through the samples and corresponding labels to

select more discriminative features [11]. Afterward the training sam-

ples and the candidates are projected to the selected discriminative

feature space using the projection matrix. In Yan et al., they propose

a weighted lasso to handle occlusion instead of using identity pixel to

represent the errors caused by occlusion [12]. To reduce the number

of L1-norm minimization, in Zhang et al. [13], they use the candi-

dates instead of the target to construct the codebook, so the number

of L1-norm minimization is required only once in theory to identify

the target. In Mei et al. [14], the number of L1-norm minimization

is reduced by exploiting the fast computational lower bound of the

reconstruction error to exclude the unimportant particles. In Liu et al.

[15], they integrated a motion model into the sparse representation.

Starting from the target initial state, a gradient based optimization

procedure is iterated to find the sparse representation and the corre-

sponding gradient vector. Although the computational cost is reduced

to some extent using the above methods, the codebook size does not

increase in essence. Thus the sparse coding based tracking can appear

less competitive due to the limited codebook size, typically when

the accuracy of other encoding methods can be improved by simply

enlarging the codebook.

3. Product sparse coding based appearance mode

3.1. Sparse representation based on product sparse coding

In the visual tracking based on sparse coding, the codebook can

be constructed by the hand-designed or learning method [16]. In this

paper we choose the hand-designed method due to its efficiency and

simplicity. The codebook is constructed by the SIFT descriptors of the

target and its 8 neighbors without trivial templates. For candidate Yi,

the patches SIFT descriptors y1,y2, . . . ,yk [18] are densely extracted by

a 16 × 16 sliding window with step of 8 pixel, where k is the number

of patches in one candidate. In the case of two sub-codebooks, each

SIFT descriptor is denoted as x = [xT
1, xT

2]T, where x1 and x2 are the

first and second half of x. Similarly, any codeword in D ∈ R
m×n can

be represented as d = [dT
1p, dT

2q]T , where d1p is the pth codeword in

D1 ∈ R

m
2 ×n and d2q is the qth codeword in D2 ∈ R

m
2 ×n, for p, q =

1,2, . . . ,n. We denote the coefficient of this codeword as βpq. Then the

objective function can be written as

β = arg min
β

1
2

∥∥∥∥∥
[

x1

x2

]
− ∑

p,q

[
d1p

d2q

]
βpq

∥∥∥∥∥
2

2

+ λ||β||1

s.t. β ≥ 0

(1)

We introduce two vectors α1 and α2, whose entries are defined

as α1p = ∑
q βpq, α2q = ∑

p βpq. The first term of (1) can be expanded

as 1
2 ||x1 − D1α1||2

2 + 1
2 ||x2 − D2α2||2

2. Since β ≥ 0, the vectors α1 and

α2 are subject to the constraint
∑

p,q |βpq| = ∑
p |α1p| = ∑

q |α2q|, i.e.

||β||1 = ||α1||1 = ||α2||1. To give a separate form of β , we introduce

two parameters λ1(0 < λ1 < λ) and λ2 = λ − λ1, and we can define

the PSC problem as [7]

[α1, α2] = arg min
α1,α2

(
1
2
||x1 − α1||2

2 + λ1||α1||1+
1
2
||x2 − α2||2

2 + λ2||α2||1

)
s.t. α1 ≥ 0, α2 ≥ 0; |α1||1 = ||α2||1

(2)

If we ignore the constraint ||α1||1 = ||α2||1, we can get two sepa-

rate sub sparse coding problems

α1 = arg min
α1

1
2
||x1 − D1α1||2

2 + λ1||α1||1

s.t. α1 ≥ 0
(3)

α2 = arg min
α2

1
2
||x2 − D2α2||2

2 + λ2||α2||1

s.t. α2 ≥ 0
(4)

Each is a sparse coding problem. But the codebooks are much

smaller. Solving these two sub-problems can be much faster. We in-

troduce the multi-task sparse representation [17] into the two sub-

problems. All the sub-sparse coefficients are computed together in-

stead of the independent operation in the original PSC. So we exploit

the sparse coefficients relevance among the particles due to the spa-

tial relation, making the sparse representation more robust and sta-

ble. In this paper we use a reasonable approximation of PSC, i.e. (i) set

λ1 = λ2 = 0.5λ, (ii) solve the two sub-problems in (3) and (4). Given

α1 and α2, the following β is a solution satisfying the constraint.

β = vec
(
α1αT

2

)√||α1||1||α2||1

(5)

where vec(·) rearrange the matrix α1α
T
2 into a vector column-wise.

From the above analysis, we can see clearly that the sparse repre-

sentation based on the above is an approximation of sparse represen-

tation based on the codebook De ∈ R
m×n2

, where De is the Cartesian

product of D1 and D2. The precise form of the PSC can be denoted as

β̂ = arg min
β̂

1
2
||x − Deβ̂||2

2 + λ||β̂||1

s.t. De = D1 × D2; β̂ ≥ 0

(6)

So the sparse representation β based on (3)–(5) is a reasonable

approximation of β̂ . Obviously the codebook D is a subset of De. So the

sparse representation of the candidate Yi based on PSC is concatenated

by all the patch sparse coefficients together.

ρi =
[
βT

1 , βT
2 , . . . , βT

k

]T

(7)

3.2. Complexity analysis

For codebook D ∈ R
m×n, the computation complexity for comput-

ing the sparse representation based on lasso is o(m2n3/2) [5]. The

comparison of the computation complexity of SC and PSC is shown in

Table 1. The computational cost of the PSC consists of two parts, the

first part is the cost of the two sparse coding sub-problems, the sec-

ond part is the cost of the product operation in (4). We can see clearly

that the computational cost of PSC is lower than the cost directly

computed on the codebook De.

Table 1

The comparison of the computation complexity.

Sparse coding Product sparse coding

Codebook De ∈ R
m×n2

D1, D2 ∈ R

m
2

×n

Complexity o(m2n3) o(0.5m2n3/2 + n2)
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