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a b s t r a c t

The goal of shape from shading (SFS) is to recover a relative depth map from the variations of image
intensity associated to changes in surface shape. There have been very few attempts at developing bio-
logically plausible solutions to this problem, and a sound neurophysiological basis is still missing. Here
we present a biologically inspired approach to SFS, formulated in terms of the well-known linear-nonlin-
ear model of neuronal responses. Without resorting to the image irradiance equation, which is at the
heart of the traditional SFS algorithms, we submit the input image to a linear filter followed by nonlinear
transformations modelled on the tuning curves of the disparity-selective binocular neurons. This yields
plausible shape estimates, without requiring information regarding surface reflectance or illumination.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The shape from shading technique (SFS) has a long tradition in
computational vision. Given a monocular image, its goal is to re-
cover a depth map from the brightness pattern associated with
the spatially varying orientation of the imaged surfaces, usually
assumed smooth, uniform, and distantly illuminated. Several
different approaches have been proposed for shape from shading
(Zhang et al., 1999; Durou et al., 2008), all of which try to solve
some version of the image irradiance equation, which relates
image intensities to the photometric and geometric properties of
the scene, embodied in the reflectance map function (Horn,
1986). Very few attempts have been made at developing
biologically plausible solutions to SFS (Lehky and Sejnowski,
1996; Pentland, 1989), and a sound neurophysiological basis for
the process is still missing. Here we introduce an SFS algorithm
based on a commonly used model of neuronal responses, the lin-
ear–nonlinear (LN) model (Movshon et al., 1978). Without having
recourse to the image irradiance equation, we compute depth esti-
mates by submitting the input image to a linear filter followed by
nonlinear transformations modelled on the tuning curves of the
disparity-selective binocular neurons of the visual cortex (Poggio
and Talbot, 1981). This choice of nonlinear functions has been
motivated, in part, by the goal to formulate SFS in similar terms
as stereoscopy, since both visual processes deal with depth estima-
tion (relative depth, in the case of SFS). More importantly, though,
we have also found that, under imaging conditions normally

assumed to hold in shape from shading, a parallel may be drawn
between the input to the LN model’s nonlinear stage and a defocus
measure. This establishes a relation between our approach and
depth from defocus estimation; the latter, on the other hand, has
already been proven formally equivalent to stereoscopy (Schech-
ner and Kiryati, 2000).

As shown by the experimental analysis reported here, the pro-
posed SFS model is able to yield faithful surface reconstructions
requiring only the input images, with no need for information
regarding surface reflectance or illumination.

2. A linear–nonlinear SFS model

The response of some visual neurons has been described by the
so-called linear-nonlinear model: the neuron input passes through
a cascade of a linear filter and a nonlinearity, to yield the average
rate that will drive a (usually Poisson) spike generator (Movshon
et al., 1978). The estimated rate can be expressed as rest = F(L),
where L is the output of the linear filter and F is the nonlinear func-
tion, commonly chosen under different guises, such as a threshold-
ing, a rectifying, or a sigmoidal function.

Here we investigate the use of an LN model to compute shape
from shading (Fig. 1a). At each image location, linear and nonlinear
stages are assumed, and the depth value is obtained as the esti-
mated LN response.

2.1. Linear stage

In Lehky and Sejnowski (1996), a neural network trained to per-
form shape from shading developed receptive fields similar to
those of the simple cells of the visual cortex (Hubel and Wiesel,

0167-8655/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.patrec.2011.03.017

⇑ Corresponding author. Tel.: +55 21 2629 5683.
E-mail addresses: jrat@ic.uff.br (J.R.A. Torreão), ccmjlf@ic.uff.br (J.L. Fernandes).

Pattern Recognition Letters 32 (2011) 1223–1239

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec

http://dx.doi.org/10.1016/j.patrec.2011.03.017
mailto:jrat@ic.uff.br
mailto:ccmjlf@ic.uff.br
http://dx.doi.org/10.1016/j.patrec.2011.03.017
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


1962). Since such cells are well described by Gabor functions
(Marcelja, 1980), we chose these as the linear kernels of our model.
For simplicity, a one-dimensional model was assumed, and, at a
given position x0, we defined the linear filter as

DxðxÞ ¼ eixxe�
ðx�x0 Þ

2

2r2 ð1Þ

where r is a free parameter, kept fixed over the whole image. The
local linear output at the site (x0,y) becomes

Lx ¼
Z

dxeixxe�
ðx�x0 Þ

2

2r2 Iðx; yÞ ð2Þ

meaning that, at each image pixel, the linear response is given by a
Gaussian-windowed Fourier transform (i.e., a Gabor transform) of
the input image. Since Lx is a complex response, in neurophysio-
logical terms this means that we would be dealing with a quadra-
ture pair of simple cells at each image site. Such pairs have
already been found in the cat’s visual cortex (Pollen and Ronner,
1981).

2.2. Nonlinear stages

2.2.1. First nonlinear stage
The linear filter output is next submitted to nonlinear transfor-

mations, in order to yield the shape estimate. We assumed a cas-
cade of two nonlinear stages, the first just computing the
magnitude of the transform in Eq. (2), such as to yield a quantity
that can be interpreted as a defocus measure (see the Appendix).
On the other hand, in terms of the parallel with a stereoscopic sys-
tem (see below), Lx will amount to a disparity, and thus, by work-

ing only with its magnitude, we are restricting our model to an
uncrossed stereo configuration – that is to say, the whole imaged
surface is assumed to lie farther away than the horopter, the locus
of the scene points which yield zero disparity (Poggio, 1995).

2.2.2. Second nonlinear stage
The second nonlinear stage was so chosen as to establish a par-

allel between our approach and biological stereoscopic processing.
Stereoscopy, similarly as shape from shading, deals with depth
estimation (relative depth, in SFS), and it seems reasonable to look
for a common biological basis for both. Moreover, under imaging
conditions generally assumed to hold in SFS, the Fourier transform
which is the input to the second nonlinear stage (Eq. (2)) can be re-
lated to a defocus measure (see the Appendix); the theoretical
equivalence between shape from defocus and stereoscopy, on the
other hand, has already been established (Schechner and Kiryati,
2000). Considering this, we chose, for the computation on the sec-
ond nonlinear stage of our SFS algorithm, a combination of func-
tions modelled on the disparity-tuning curves of the binocular
cortical neurons (Poggio and Talbot, 1981). A tuning curve is any
mapping of a neuron’s average firing rate as a function of a given
stimulus, and it can often be well approximated by a Gaussian.
Here we will be working with the tuning curves of binocular neu-
rons, which are sensitive to stereoscopic disparity.

2.2.2.1. Binocular neurons. Binocular neurons are first found in area
V1 of the visual cortex. They are sensitive to light presented to
either eye, and play a fundamental role in biological stereo pro-
cessing, by giving different responses to stimuli comprising differ-
ent binocular disparities. A binocular disparity arises from the

Fig. 1. Linear-nonlinear system for SFS estimation. (a) A window of fixed length W is centered at each image pixel, and a linear measure, Lx (Eq. (2)), is obtained by filtering
the windowed intensities by a complex Gabor function, Dx(x), of frequency x. The first nonlinear stage computes the magnitude of the transformed intensities. This is then
submitted to a series of nonlinear transformations, modelled on the disparity tuning profiles of the binocular neurons (b), to yield the depth estimate at frequency x, Zx. The
nonlinear transformations depend on the linear outputs, LX, at all frequencies X, and are combined into the function FX (Eq. (6)), which adds tuned-inverse (TI), tuned-zero
(T0), tuned-near (TN), and tuned-far (TF) profiles, modelled by gaussians, in such a way that a near (NE) and a far (FA) profiles also result (Eq. (7)).
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