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a b s t r a c t

K-hyperline clustering is an iterative algorithm based on singular value decomposition and it has been
successfully used in sparse component analysis. In this paper, we prove that the algorithm converges
to a locally optimal solution for a given set of training data, based on Lloyd’s optimality conditions. Fur-
thermore, the local optimality is shown by developing an Expectation-Maximization procedure for learn-
ing dictionaries to be used in sparse representations and by deriving the clustering algorithm as its
special case. The cluster centroids obtained from the algorithm are proved to tessellate the space into
convex Voronoi regions. The stability of clustering is shown by posing the problem as an empirical risk
minimization procedure over a function class. It is proved that, under certain conditions, the cluster cen-
troids learned from two sets of i.i.d. training samples drawn from the same probability space become
arbitrarily close to each other, as the number of training samples increase asymptotically.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The K-hyperline clustering algorithm is an iterative K-means
like procedure that performs a least squares fit of K 1-D linear sub-
spaces to the training data (He et al., 2009). These subspaces are re-
ferred to as hyperlines. Both the K-means and K-hyperline
clustering algorithms are special cases of the general joint optimi-
zation problem of sparse representation and dictionary learning.
The general model for representation that we consider here is

Y ¼ WAþ N; ð1Þ

where the matrix Y ¼ ½y1y2; . . . ; yT � 2 RM�T is a collection of T training
vectors and each training vector yi 2 RM . W ¼ ½w1w2; . . . ;wK � 2 RM�K is
a dictionary that contains the set of representative patterns.
A ¼ ½a1a2; . . . ;aT � 2 RK�T is the matrix of T coefficient vectors and N
is a noise matrix whose elements are independent realizations from
the Gaussian distribution Nð0;r2Þ. We will assume that the column
vectors of W are normalized. The dictionary W can consist of a prede-
fined set of patterns based on the mathematical model of data or
alternatively they can be learned from the training vectors them-
selves. Learning the dictionary from data leads to superior perfor-
mance in applications such as image compression, inpainting and
compressive sensing (Aharon et al., 2006; Thiagarajan et al., 2011).
The general sparse representation and dictionary learning optimiza-
tion can posed as shown in (Aharon et al., 2006), i.e.,

min
W;A
kY�WAk2

F subject to kaik0 6 s; 8i and kwjk2 ¼ 1; 8j; ð2Þ

where s is the sparsity (the maximum number of non-zero ele-
ments) of the representation of a training vector, k.kF is the Frobe-
nius norm, k�k0 is the ‘0 norm and k�k2 is the ‘2 norm. We will use
uppercase bold symbols for denoting either a set of vectors or a ma-
trix and this will be clear from the context.

In the K-means clustering problem, we assume that each coeffi-
cient vector is 1-sparse, i.e., has exactly one non-zero coefficient
and the coefficient value is 1. In the K-hyperline clustering prob-
lem, we still assume a sparsity of 1 for the coefficient vector, but
the value of the non-zero coefficient itself is unconstrained. This
can be obtained by using the value of s = 1 in (2). The columns of
W, given by the set fwjg

K
j¼1 are the K normalized cluster centroids.

Each normalized cluster centroid denotes a 1-D linear subspace
that passes through the origin. Let us denote the data in the jth
cluster by the matrix Yj ¼ ½yi�i2Cj

, where the membership set Cj con-
tains the training vector indices corresponding to the cluster j. The
singular value decomposition (SVD) (Golub and Loan, 1996) of
Yj ¼ Uj!jV

T
j , where Uj and Vj are orthonormal matrices of size

M �M and jCjj � jCjj respectively. !j is a diagonal matrix with the
singular values arranged in descending order. The columns of Uj

and Vj are respectively the singular vectors for the columns and
rows of the matrix Yj. The first column of Uj is the singular vector
corresponding to the largest singular value of Yj, and it is the cen-
troid of cluster j. This clustering algorithm is suited for sparse com-
ponent analysis, where an observable data matrix is separated into
a sparse linear combination of hidden sources (He et al., 2009).
Sparse component analysis is particularly well suited for underde-
termined blind source separation, where the number of observa-
tions is less than the number of sources. In our earlier work
(Thiagarajan et al., 2011), we have used K-hyperline clustering
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for learning a multilevel dictionary that is useful in various appli-
cations involving sparse approximations.

For a wide class of distortion measures, known as Bregman
divergences, optimal hard as well as soft clustering schemes have
been analyzed in (Banerjee et al., 2005b). The classical K-means
algorithm is a hard clustering approach when the Bregman diver-
gence measure used is the squared Euclidean distance. Many clus-
tering algorithms are equivalent to vector quantization procedures.
For example, the K-means procedure is also referred to as the gen-
eralized Lloyd algorithm for vector quantizer design. The local opti-
mality of K-means can be shown using the Lloyd’s conditions for
the optimality of a vector quantizer (Gersho and Gray, 1992). Clus-
tering algorithms based on Bregman divergence measures are
shape quantizers, where each training vector is assigned to a clus-
ter centroid (shape) and the cluster centroids are obtained using
conditional expectations of training vectors (Banerjee et al.,
2005a). However, in K-hyperline clustering a coefficient (gain) un-
ique to the training vector is computed in addition to assigning the
training vector to a centroid. Therefore, K-hyperline clustering is
similar, but not identical, to a shape-gain quantization scheme
(Gersho and Gray, 1992) because the gain values are unquantized.
In this work, we show that the K-hyperline clustering algorithm
proposed in (He et al., 2009) converges to a locally optimal solu-
tion. The local optimality is proved by (a) showing that the algo-
rithm satisfies the Lloyd’s conditions for an optimal vector
quantizer and, (b) by posing the problem of dictionary learning
as an Expectation-Maximization (EM) procedure (Dempster et al.,
1977) and showing that K-hyperline clustering is a constrained
version of the EM procedure.

The general idea behind stability of a clustering algorithm is
that the algorithm should produce cluster centroids that are not
significantly different when different i.i.d. training sets from the
same probability space are used for training (Ben-David et al.,
2006; Ben-David et al., 2007; Rakhlin and Caponnetto, 2007). The
authors in (Ben-David et al., 2006) show that a clustering algo-
rithm is stable if there is a unique minimizer to the objective func-
tion. This notion is extended in (Ben-David et al., 2007) to
characterize the stability of the K-means clustering algorithm,
based on the number of optimal solutions to the underlying clus-
tering problem. A different idea of stability is used in (Rakhlin
and Caponnetto, 2007) to prove that the K-means clustering is sta-
ble. When there is no unique global minimizer to the objective
function, it is shown in (Rakhlin and Caponnetto, 2007) that K-
means is stable with respect to a change in oð

ffiffiffi
T
p
Þ samples between

two i.i.d. training sets of T samples each, as T ?1. This is per-
formed by (a) posing the K-means clustering as an empirical risk
minimization problem over a class of distortion functions, (b) iden-
tifying the class as uniform Donsker by finding the covering num-
ber with respect to the supremum norm for the class and, (c)
proving the stability of the cluster centroids from the stability of
the distortion function class. In this paper, we follow the line of
reasoning given in (Rakhlin and Caponnetto, 2007), to prove the
stability of K-hyperline clustering with respect to a change in
oð

ffiffiffi
T
p
Þ samples. We also show that the K-hyperline clustering be-

comes unstable when some training vectors have their Euclidean
norm close to zero. Because of the different geometries, the proofs
of stability are substantially different for K-means and K-hyperline
clustering algorithms.

The rest of this paper is organized as follows. In Section 2 we de-
scribe the algorithm, derive the covering number for the distortion
function class and show that the cluster centroids tessellate the
space into convex Voronoi regions. The convergence and optimal-
ity of the clustering algorithm is proved in Section 3. Section 4
presents the proof of stability of the K-hyperline clustering and
Section 5 concludes the paper.

2. The K-hyperline clustering algorithm

Let us assume that the data Y lies in RM and define the proba-
bility space ðY;R; PÞ, where P is an unknown probability measure.
The training samples, fyig

T
i¼1, are T i.i.d. realizations from the prob-

ability space. We also define an empirical probability measure PT

that assigns the mass T�1 to each of the T training samples (van
de Geer, 2000). The goal of the clustering is to find K partitions of
the training data that results in minimum total distortion.

The K-hyperline clustering algorithm is similar to the K-means
algorithm and it is an alternating minimization problem that pro-
ceeds in two stages after initialization: the cluster assignment and
the cluster centroid update stages. In the cluster assignment stage,
the training vector yi is assigned to a cluster j based on the mini-
mum distortion criteria, HðyiÞ ¼ argminjdðyi;wjÞ, which is equiva-
lent to HðyiÞ ¼ argmaxjjyT

i wjj. Here, Hð�Þ is the membership
function that returns the cluster index of a training vector and
the distortion measure is

dðy;wÞ ¼ ky � wðyTwÞk2
2; ð3Þ

where w is assumed to be normalized. Since the centroids in K-
hyperline clustering are 1-D linear subspaces, the distortion mea-
sure indicates the squared length of the residual obtained after
orthogonal projection of the data y onto its centroid w. The mem-
bership set Cj ¼ fijHðyiÞ ¼ jg contains training vector indices corre-
sponding to the cluster j. Ties in the cluster assignment stage are
broken arbitrarily. Based on the cluster assignment, the updated
cluster centroids can be obtained as described in Section 2.1.

2.1. Cluster centroid

Given the set Cj, the jth cluster centroid is updated as
wj ¼ argminwEPT ½dðy;wÞjHðyÞ ¼ j�. This can also be expressed using
the following equation:

wj ¼ argminw

X
i2Cj

kyi � wðyT
i wÞk

2
2: ð4Þ

Consider the matrix Yj ¼ ½yi�i2Cj
and the SVD of Yj ¼ Uj!jV

T
j , where

!j is a diagonal matrix with singular values arranged in descending
order. The solution to (4) is obtained by taking wj as the first column
of Uj. Note that the K-hyperline clustering is not a Bregman diver-
gence based clustering scheme since the centroid is not the condi-
tional expectation of the training vectors (Banerjee et al., 2005a).

Let us assume a generative model for the training vectors fyigi2Cj

in cluster j as, yi = aji wj + ni, where ni are i.i.d. realizations from
Nð0;r2IÞ and aji are arbitrary coefficients. For this model, the Max-
imum Likelihood (ML) estimate of the cluster centroid wj is ob-
tained using SVD as described earlier and aji ¼ yT

i wj. If we
constrain aji = 1, the ML estimate of wj is the mean of fyigi2Cj

, which
is similar to the case of K-means clustering. Because of the flexibil-
ity of incorporating coefficients, the K-hyperline clustering typi-
cally achieves a lesser residual error than the K-means clustering.
This motivates the use of SVD based learning algorithms such as
the ones proposed in (Aharon et al., 2006; Thiagarajan et al.,
2008; Thiagarajan et al., 2011), for sparse representations.

2.2. Distortion function for clustering

Mathematically, the K-hyperline clustering is a problem of find-
ing normalized centroids that minimize the total distortion,

DðHÞ ¼ 1
T

XK

j¼1

X
i2Cj

dðyi;wjÞ ¼
1
T

XK

j¼1

X
i2Cj

yT
i I� wjw

T
j

� �
yi: ð5Þ
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