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We propose a purely discrete deformable partition model for segmenting 3D images. Its main ability is to
maintain the topology of the partition during the minimization process. To do so, our main contribution is
a new definition of multi-label simple points (ML simple point) that is easily computable. An ML simple
point can be relabeled without modifying the overall topology of the partition. The definition is based on
intervoxel properties, and uses the notion of collapse on cubical complexes. This work is an extension of a
former restricted definition (Dupas et al., 2009) that prohibits the move of intersections of boundary sur-
faces. A deformation process is carried out with a greedy energy minimization algorithm. A discrete area
estimator is used to approach at best standard regularizers classically used in continuous energy mini-
mizing methods. We illustrate the potential of our approach with the segmentation of 3D medical images

with known expected topology.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Context and contribution

Over the past 20 years, energy-minimizing techniques have
shown a great potential for image segmentation. Originally, most
of them were based on a variational formulation, i.e. a continuous
optimization problem in a functional space. We may quote
deformable models (Kass et al., 1988), Mumford-Shah approxima-
tion (Mumford and Shah, 1989), geometric or geodesic active con-
tours and other levelset variants (Caselles et al., 1993, 1997,
Malladi et al., 1995; Vese and Chan, 2002 ), among others. Their for-
mulation combines in a single expression a term expressing the fit
to data and a term describing shape priors (generally length or area
penalization) and acting as a regularizer. The parameter balancing
the two terms allows to tune the technique according to the
amount of noise and perturbation in the data. In a sense, this
parameter acts as a scale factor, providing a very natural multiscale
analysis of images.

Energy-minimization for image segmentation can also be
expressed in a discrete setting: structural split and merge (Dupas
and Damiand, 2008), weighted graph with cut optimization
(Boykov et al., 2001; Boykov and Kolmogorov, 2003), irregular
and combinatorial pyramids (Guigues et al., 2003; Pruvot and Brun,
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2007), Markov fields and stochastic processes (Geman and Geman,
1987), minimum description length (Leclerc, 1989; Zhu and Yuille,
1996). The discrete approaches present several advantages for
finding the optimal solution. Greig et al. (1989) have given a poly-
nomial algorithm for solving the two label segmentation problem.
Approximate solutions for the multi-label partition are also avail-
able (Boykov et al., 2001; Guigues et al., 2006; Pruvot and Brun,
2007). However, the regularization/shape prior term of these dis-
crete methods is reduced to the digital length or area of region
boundaries, which is a very poor area estimator. Therefore, from
the regularization point of view, it tends to flatten optimal config-
urations. As a consequence, optimal solutions may be geometri-
cally somewhat different.

We propose a novel energy-minimizing model for segmenting
3D images into multiple regions. It aims at combining the advanta-
ges of the continuous and the discrete energy-minimizing tech-
niques. This paper is an extension of the work of (Dupas et al.,
2009). It shares with it the following features:

discrete model: it is a purely digital formulation of energy min-
imization, which can be solved by combinatorial algorithms. In
this exposition, we have for now use a simple greedy algorithm.
approximation of continuous regularization: the area regu-
larizer is approached in this digital setting by an accurate dis-
crete geometric estimator.

contour-based and region-based energies: both region struc-
tures and the geometry of their interfaces are encoded in the
topological map structure. Any kind of energy may thus be eval-
uated efficiently: e.g. region-based like quadratic deviation
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(Mumford and Shah, 1989; Chan et al., 2001) or contour-based
like strong gradients (Kass et al., 1988).

topological control: it is guaranteed that the topology of the
whole partition remains unchanged during the evolution of
the boundaries between regions.

Furthermore, compared with (Dupas et al., 2009), this paper de-
scribes a new method to guarantee that the topology of the whole
partition is preserved during the deformation process, which al-
lows a larger class of partition deformation at each step while
guaranteeing that the partition topology remains unchanged.

1.2. Discussion

Our objective is to mimick as precisely as possible the behavior
of continuous models while staying in a discrete setting. It is well
known that continuous variational problems induce PDEs which
are solved iteratively. They are dependent on their initialization
and may get stuck in local minima, except in specific cases (Cohen
and Kimmel, 1997; Chan et al., 2001; Ardon and Cohen, 2006). To
our knowledge, none of them are able to find the optimal image
partition if more than two regions are expected, although recent
works using convex relaxation seem promising for 2D images
(Chambolle et al., 2008; Pock et al., 2009). As said above, the dis-
crete methods have interesting properties for extracting an opti-
mal solution, but their regularization term is too primitive. As an
exception, Boykov and Kolmogorov (2003) have proposed to enrich
the neighborhood graph to get finer area estimators—in a way sim-
ilar in spirit to chamfer distances—but their approach is for now
limited to a 26-neighborhood, which remains a coarse
approximation.

Our discrete model is related to the discrete deformable bound-
aries (Lachaud and Vialard, 2001), or to the discrete snake (de
Vieilleville and Lachaud, 2009). Instead of enriching the adjacency
graphs, we keep the standard image graph but we compute the
regularization term in a potentially larger neighborhood with dis-
crete geometric estimators. This term is an estimation of the area
of each surfel. The discrete geometric estimator extracts maximal
digital straight segments along two directions to estimate the sur-
fel normal, the surfel area is then a byproduct (Lachaud and Via-
lard, 2003). Such estimators are known to have good
convergence behavior as the resolution gets finer and finer (La-
chaud et al,, 2007). In a sense, the discrete energy tends toward
the continuous energy as the resolution gets finer. This is proved
for the 2D formulation in (Lachaud, 2006). In the present paper,
we use only greedy combinatorial optimization schemes, which
entails that our model may also be stuck in local minima, but the
proposed framework let us free to test more elaborate combinato-
rial optimization algorithm.

This model encodes the 3D evolving digital partition with a
combinatorial map, which offers a simple and optimal access to
the partition topology. Regions are then naturally delineated and
region energies are easily computed. This partition model also en-
codes the digital geometry between regions with an intervoxel ma-
trix. Frontiers can be tracked in a straightforward way to compute
contour-based energies. As a consequence, we obtain a versatile
segmentation tool. According to the image characteristics or the
application, it is well known that contour or region based ap-
proaches are more or less adapted. For instance, region-based ener-
gies are generally more convex and thus easier to minimize (Chan
et al., 2001; Vese and Chan, 2002). Our partition model allows to
mix energies defined on regions and energies defined on bound-
aries. Very few explicit or implicit variational or deformable mod-
els can do that in 3D, except perhaps the work of (Pons et al., 2007),
but their approach may not model energies depending on the
inclusion between regions.

Finally, we address the problem of controlling the topology of
the partition while it is evolving toward a minimal position. This
is critical in several specific image applications where the topology
of anatomic components is a prior information, like atlas matching.
This is even truer in 3D images, where anatomic components are
intertwined in a deterministic way. In 2D, when there are only
two labels (foreground and background), simple points are a clas-
sical technique for doing it (Bertrand, 1994). Similar tools are used
in level set techniques to control topology changes (Han et al.,
2003; Ségonne, 2008). For the more complex case of a multi-label
partition, a few authors have proposed an equivalent to simple
points in a discrete setting (Ségonne et al., 2005; Bazin et al.,
2007). However, they are computationally too costly to be used
to drive the evolution of a digital partition.

This paper is an extension of the work (Dupas et al., 2009),
where a first notion of simple point in a partition was proposed.
This first definition was enough to simulate movements of bound-
aries between two regions, but it forbade movements of bound-
aries between three or more regions (1-dimensional boundaries).
We propose here a more general definition of simple points in mul-
ti-label partitions, which we call ML-simple points (ML for multi-la-
bel). This new definition gives more freedom to the evolving
partition. Updating ML-simple points induces movements of sur-
face, edges, and points between regions, while preserving at all
steps the initial partition topology. Moreover, ML-simpleness is
computable in constant time, thanks to our intervoxel encoding.

The paper is organized as follows. Section 2 recalls standard no-
tions of digital geometry used later on. Section 3 presents the def-
inition of ML-simpleness and proves that it implies simpleness. The
ML-simpleness test derives from the definition. Section 4 describes
a first digital deformable partition model that uses ML-simple
points to ensure the preservation of the topology and Section 5
shows some experiments.

2. Preliminary notions

The first subsection recalls standard digital topology notions
based on voxels. The second subsection gives further definitions
for intervoxel topology. The third subsection presents the defini-
tions related to cubical cell complexes and the last subsection gives
our first restricted version of ML-simpleness.

2.1. Images and voxels notions

A voxel is an element of the discrete space Z3. A 3D image is a
finite set of voxels I (the image domain), and a mapping between
these voxels and a set of colors or a set of gray levels (the image
values). Each voxel v is associated with a label [(v), a value in a gi-
ven finite set L. These labels can be obtained from the image by a
segmentation algorithm.

We use the classical notion of «-adjacency, with « € {6,18,26}.
The set of voxels a-adjacent to vis noted N (v), and thus we define
N,(v) = N, (v) U {v}. An a-path between two voxels #; and 1, is a
sequence of voxels between v; and », such that each pair of con-
secutive voxels is «-adjacent. A set of voxels S is a-connected iff
there is an o-path between any pair of voxels of S, having all its
voxels in S.

We consider the relation induced by being 6-connected and
having the same label. This is an equivalence relation over the im-
age domain, and the equivalence classes are the regions of the im-
age. We consider an infinite region Ry that “surrounds” the image
(i.e. Ry = 73\ I). Note that there is only one infinite region, which
is not necessarily 6-connected if the image has some holes. The
complement set of a region X in I is denoted by X. We extend the
notion of adjacency to regions: two regions R, and R, are
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