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a b s t r a c t

Medial axes and skeletons are notoriously sensitive to contour irregularities. This lack of stability is a seri-
ous problem for applications in e.g. shape analysis and recognition. In 2005, Chazal and Lieutier intro-
duced the k-medial axis as a new concept for computing the medial axis of a shape subject to single
parameter filtering. The k-medial axis is stable under small shape perturbations, as proved by these
authors. In this article, a discrete k-medial axis (DLMA) is introduced and compared with the recently
introduced integer medial axis (GIMA). We show that DLMA provides measurably better results than
GIMA, with regard to stability and sensibility to rotations. We give efficient algorithms to compute the
DLMA, and we also introduce a variant of the DLMA which may be computed in linear-time.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The notion of medial axis has been introduced by Blum in the
60s (Blum, 1961, 1967). It has proved its usefulness in many prac-
tical applications, and numerous works were devoted to its proper-
ties and implementations. The original definition of the medial axis
by Blum was based on a fire propagation analogy. However, its
simplest definitions only require elementary geometry. In the con-
tinuous Euclidean space, the two following definitions can be used
to formalise this notion: let X be a bounded subset of Rn;

– Interpretation (a) of the medial axis of X consists of the centers
of the n-dimensional balls that are included in X but that are not
included in any other n-dimensional ball included in X.

– Interpretation (b) of the medial axis of X consists of the points
x 2 X that have more than one nearest points on the boundary
of X.

These two definitions differ only by a negligible set of points
(see Matheron, 1988), in general interpretation (a) of the medial
axis is a strict subset of interpretation (b). Notice that in some
works, the term ‘‘skeleton” is used to refer to both interpretations,
especially in the continuous framework. In this paper, we shall
restrict the use of this term to the cases where the skeleton is
topologically equivalent to the original shape.

To compute the medial axis approximately or exactly, different
methods have been proposed, relying on different frameworks:

discrete geometry (Borgefors et al., 1991; Ge and Fitzpatrick,
1996; Malandain and Fernández-Vidal, 1998; Rémy and Thiel,
2005; Hesselink and Roerdink, 2008), digital topology (Davies
and Plummer, 1981; Vincent, 1991; Talbot and Vincent, 1992;
Pudney, 1998), mathematical morphology (Serra, 1982; Soille,
1999), computational geometry (Attali and Lachaud, 2001;
Ogniewicz and Kübler, 1995; Attali and Montanvert, 1996), partial
differential equations (Siddiqi et al., 1999), and level-sets (Kimmel
et al., 1995). In this paper, we focus on medial axes in the discrete
grid Z2 or Z3, which are centered in the shape with respect to the
Euclidean distance.

A major difficulty when using the medial axis in applications
(e.g. shape recognition), is its sensitivity to small contour perturba-
tions, in other words, its lack of stability. A recent survey (Attali
et al., 2009) summarises selected relevant studies dealing with this
topic. This difficulty can be expressed mathematically: the trans-
formation which associates a shape to its medial axis is only
semi-continuous. This fact, among others, explains why it is usu-
ally necessary to add a filtering step (or pruning step) to any meth-
od that aims at computing the medial axis.

Hence, there is a rich literature devoted to medial axis pruning,
in which different criteria were proposed in order to discard
‘‘spurious” medial axis points or branches: see Attali et al. (1995),
Ogniewicz and Kübler (1995), Attali and Montanvert (1996),
Malandain and Fernández-Vidal (1998), Attali and Lachaud
(2001), Svensson and Sanniti di Baja (2003), Bai et al. (2007),
Couprie et al. (2007), Hesselink and Roerdink (2008), to cite only
a few. However, we lack theoretical justification, that is, a
formalised argument that would help to understand why a filtering
criterion is better than another.

In 2005, Chazal and Lieutier introduced the k-medial axis
and studied its properties, in particular those related to stability

0167-8655/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.patrec.2010.09.002

⇑ Corresponding author. Fax: +33 0686740905.
E-mail addresses: j.chaussard@esiee.fr, chaussaj@esiee.fr (J. Chaussard), m.cou-

prie@esiee.fr (M. Couprie), h.talbot@esiee.fr (H. Talbot).

Pattern Recognition Letters 32 (2011) 1384–1394

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec

http://dx.doi.org/10.1016/j.patrec.2010.09.002
mailto:j.chaussard@esiee.fr
mailto:chaussaj@esiee.fr
mailto:m.couprie@esiee.fr
mailto:m.couprie@esiee.fr
mailto:h.talbot@esiee.fr
http://dx.doi.org/10.1016/j.patrec.2010.09.002
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


(Chazal and Lieutier, 2005). Consider a bounded subset X of Rn,
as for example, for n = 2, the region enclosed by the solid curve
depicted in Fig. 1 (left). Let x be a point in X, we denote by P(x)
the set of points of the boundary of X that are closest to x.
For example in Fig. 1, we have P(x) = {a,b}, P(x0) = {a0,b0} and
P(x00) = {a00}. Let k be a non-negative real number, the k-medial axis
of X is the set of points x of X such that the smallest n-dimensional
ball1 including P(x) has a radius greater than or equal to k. Notice
that the 0-medial axis of X is equal to X, and that any k-medial axis
with k > 0 is included in the medial axis according to definition (b).
We show in Fig. 1 (right) two k-medial axes with different values
of k.

A major outcome of Chazal and Lieutier (2005) is the following
property: informally, for ‘‘regular” values of k, the k-medial axis re-
mains stable under perturbations of X that are small with respect
to the Hausdorff distance. Typical non-regular values are radii of
locally largest maximal n-dimensional balls.

This property is a strong argument in favor of the k-medial axis,
especially in the absence of such result for other proposed criteria.

In the field of computational geometry, the k-medial axis has
been exploited in particular by Samozino et al. (2006) to propose
a robust method for reconstructing surfaces from point clouds.
Also, notions closely related to the k-medial axis have led Chazal
et al. to propose stable approximations of tangent planes and nor-
mal cones from noisy samples (Chazal et al., 2009).

In the discrete grids, namely Z2 and Z3, a similar filtering crite-
rion has been considered in independent works (Malandain and
Fernández-Vidal, 1998; Hesselink and Roerdink, 2008). It consists
of selecting for each medial axis point two of its closest boundary
points, and using the distance between these two points as filtering
criterion. The work of Hesselink and Roerdink (2008) provides a
linear-time algorithm to compute a filtered medial axis based on
this criterion, which exhibits good noise robustness properties in
practice.

In this article (which extends Chaussard et al. (2009), a preli-
minary version published in the DGCI conference proceedings),
we introduce the definition of a discrete k-medial axis (DLMA) in
Zn. We evaluate experimentally its stability and rotation invari-
ance in 2D and 3D. In this experimental study, we compare it with
the previously introduced integer medial axis (GIMA) (Hesselink
et al., 2005; Hesselink and Roerdink, 2008) and show that the
DLMA provides measurably better results. Furthermore, we intro-
duce a variant of the DLMA which may be computed in linear time,
for which the results are very close to those of the DLMA, and
which is only slightly slower than the one proposed by Hesselink
and Roerdink (2008).

2. The k-medial axis

Let us first recall the original definition of the k-medial axis
given by Chazal and Lieutier.

Let x ¼ ðx1; . . . ; xnÞ; y ¼ ðy1; . . . ; ynÞ 2 Rn, the Euclidean distance
between x and y is denoted by d(x,y), in other terms, dðx; yÞ ¼
ð
Pn

k¼1ðyk � xkÞ2Þ
1
2.

Let X be a finite subset of Rn or Zn. We set d(y,X) = minx2X

{d(y,x)}. We denote by jXj the number of elements of X, and by X
the complement of X.

Let E be either Rn or Zn. Let x 2 E; r 2 Rþ, we denote by Br(x) the
n-dimensional ball (or ball for simplicity) of radius r centered on x,
defined by Br(x) = {y 2 Ejd(x,y) 6 r}. We also define B

�
rðxÞ ¼

fy 2 E j dðx; yÞ < rg.
Let X # E. A ball Br(x) # X is maximal for X if it is not strictly in-

cluded in any other ball included in X. The Euclidean Medial Axis of
X, denoted by EMA(X), is the set of the centers of all the maximal
balls for X.

Let S be a non-empty subset of E, and let x 2 E. The projection of x
on S, denoted by PS(x), is the set of points y of S which are at
minimal distance from x; more precisely,

PSðxÞ ¼ fy 2 Sj8z 2 S; dðy; xÞ 6 dðz; xÞg:

If X is a subset of E, the projection of X on S is defined by
PS(X) =

S
x2XPS(x).

Let S � Rn, we denote by R(S) the radius of the smallest ball
enclosing S, that is, RðSÞ ¼minfr 2 Rj9y 2 Rn;BrðyÞ � Sg.

The k-medial axis may now be defined based on these
notions.

Definition 1 (Chazal and Lieutier, 2005). Let X be an open
bounded subset of Rn, and let k 2 Rþ. The k-medial axis of X is the
set of points x in X such that RðPXðxÞÞP k.

3. A discrete k-medial axis

Transposing the original definition of the k-medial axis directly
to Zn would lead to an unsatisfactory result. For instance, consider
a horizontal ribbon in Z2 with constant, even width and infinite
length. Clearly, the projection of any point of this set on its comple-
mentary set is reduced to a singleton. This is why, if we keep the
same definition, any k-medial axis of this object with k > 0 would
be empty.

In order to avoid such unwanted behaviour, we replace the pro-
jection by the so-called extended projection (Couprie et al., 2007).
The extended projection was originally introduced in order to pro-
pose a discrete definition of the bisector function, another indicator
used to filter skeletons.
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Fig. 1. Illustration of the k-medial axis. Left: Points x, x0 and x00 and their respective closest boundary points. Top right: k-medial axis with k = �, a very small positive real
number. Bottom right: k-medial axis with k = d(a0 ,b0)/2 + �.

1 The center of this ball is also the projection of x onto the convex hull of P(x) (see
Chazal et al., 2009).
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