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a b s t r a c t

This paper presents an anisotropic diffusion-based approach to noise reduction, which utilizes a pre-trained
dictionary for diffusivity determination. The proposed method involves off-line and on-line processing
steps. For off-line processing, a multiscale region analysis that effectively separates the structure informa-
tion from image noise is proposed. Using multiscale region analysis, the proposed approach classifies local
regions and constructs a dictionary of several patch classes. Further, this paper presents a dictionary-based
diffusivity determination that exhibits enhanced performance of anisotropic diffusion. In addition, we
propose a single-pass adaptive smoothing that uses a diffusion path-based kernel, which is derived from
iterative anisotropic diffusion operations. By using single-pass adaptive smoothing for both off-line and
on-line processing, the proposed method is able to avoid the use of expensive iterative region analysis. In
on-line processing, the proposed approach classifies input image patches using multiscale region analysis.
It subsequently selects the diffusion threshold with the highest matching ratio from the dictionary for each
region. Finally, single-pass adaptive smoothing is performed with the selected diffusion threshold. Simula-
tions show that the proposed method outperforms benchmark methods by significantly enhancing the
peak signal-to-noise ratio and structural similarity indexes.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Image denoising is the process of eliminating noise from a noisy
image in order to improve the image quality. It is a fundamental
pre-processing step in various image processing applications such
as image segmentation, video coding, and medical imaging. Con-
ventional image denoising methods often result in the loss of
structure information such as edges and textures. To address this
problem, researchers have attempted to develop image denoising
methods that preserve structure information when smoothing is
applied to suppress image noise [10].

The representative methods for structure-preserving image deno-
ising are bilateral filtering [21], adaptive filtering [19], non-local
means filtering [3], total variation diffusion [8,20], and partial differ-
ential equation (PDE)-based smoothing [2,6,7,16–18,22,26,27].
Among these, PDE-based smoothing is widely used for image denois-
ing because of its superior performance in preserving structure infor-
mation. The Perona and Malik (PM) model [18], also called the
anisotropic diffusion (AD) model, is the most widely used approach

to PDE-based smoothing. The AD model, inspired by the heat diffusion
process, iteratively performs nonlinear diffusion filtering; a time- and
space-varying diffusivity is adopted to preserve structure information
while eliminating the image noise. In the AD model, the diffusivity is
adjusted on the basis of region characteristics extracted from the gray
level gradients. Accordingly, the diffusivity is reduced in regions with
high gradients of gray levels in order to reduce the smoothing
strength, thereby ensuring that the structure information in these
regions is preserved or even enhanced. Although this approach is
effective for image denoising, further improvements are possible
from the viewpoints of structure preservation and noise elimination
by revising the diffusivity-selection method. Therefore, various
approaches have been proposed to determine a new diffusivity func-
tion and a diffusion threshold based on local region characteristics, in
addition to the gray level gradients.

Weickert [26] defined the PM model as pseudo-anisotropy
because it uses a scalar-valued diffusion coefficient that is based
only on the magnitude of the gray level gradient. As a result, noise
components located near strong edges could not be successfully
removed using this method. To mitigate this problem, a diffusion
tensor is introduced to replace the conventional scalar-valued
diffusion coefficient. Application of this diffusion tensor produces
diffusion along the direction of the edge while prohibiting perpen-
dicular diffusion. Therefore, noise components located in close
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proximity to strong edges can be removed more effectively as
compared to the typical AD model. Black et al. [2] proposed a new
diffusivity function that uses Tukey’s biweight for enhanced edge
sharpness preservation. In [27], a kernel-based method is adopted
to improve the accuracy of the separation between the image signal
and image noise. Further, the diffusivity is adaptively determined as
a function of the median absolute deviation of the gradient magni-
tudes [2]. Chao and Tsai [7] proposed a new AD model for edge-
preserving smoothing that utilizes a local variance to determine
the diffusion threshold. Using this local variance, they attempted
to reduce the blurring effect around image boundaries and texture
regions. Similar to [7], Li et al. [16] utilized contextual information
extracted from the local variance while determining the diffusion
threshold for a region. In their methods, the noise variance and dif-
fusion threshold are calculated in each iteration using the Canny
edge detector [5].

Although these AD-based image-denoising methods, which
adaptively adjust the diffusion threshold depending on the region
characteristics, facilitate enhanced structure information
preservation, they still have some drawbacks. First, conventional
region-analysis methods do not effectively distinguish between
weak structure information and image noise because they generally
use only the local variance of a given noisy image. Second, the con-
ventional algorithms do not extract the optimal diffusivity for a local
region because they simply adjust the diffusivity proportionally,
based on the results of the region analysis. Finally, the conventional
image-denoising methods require the region-analysis process to be
performed iteratively before each AD filtering, thereby imposing
high computational costs.

In this paper, we propose a single-pass AD model that improves
the quality of a denoised image using a dictionary-based diffusivity
determination method. Specifically, we first propose a multiscale
region analysis to improve the accuracy of the separation between
the structure information and image noise. Second, a dictionary-
based diffusivity determination method is proposed to regionally
select the optimal diffusion threshold using a training process.
Finally, we propose single-pass adaptive smoothing using a
diffusion path-based kernel (DPK) designed by approximating the
iterative AD operations. This enables the proposed method to
bypass an iterative region analysis. Moreover, the application of dic-
tionary-based diffusivity determination results in significantly
enhanced noise reduction performance over the typical AD. This is
achieved by utilizing its enhanced maximum smoothing strength.

The remainder of this paper is organized as follows. In Section 2,
we explain the principle of the typical AD model, which forms the
theoretical basis of the proposed method. In Section 3, we describe
the proposed method, which involves both on-line and off-line
processing. In Section 4, we evaluate the image quality using
benchmark methods as well as the proposed method. Finally, our
conclusions are presented in Section 5.

2. Anisotropic diffusion based noise reduction

AD is a PDE-based noise reduction method that uses a nonlinear
diffusion process for noise elimination by modifying the heat equa-
tion. Theoretically, AD distinguishes an image signal from image
noise using the gray level gradient in a given noisy image. Then,
AD iteratively eliminates the gray level variations caused by the
image noise while preserving the gray level variations induced
by the original image signal. This is accomplished by applying
the following PDE for noise elimination:

@Iðx; y; tÞ=@t ¼ divðgðrIðx; y; tÞÞrIðx; y; tÞÞ; ð1Þ

where div and r denote the divergence and the gradient operator,
respectively, and g(rI(x,y, t)) and I(x,y, t) denote the diffusion coef-
ficient and gray level of a pixel (x,y) at time t, respectively. If g(�) is a

constant for all pixels, Eq. (1) is reduced to an isotropic diffusion.
Isotropic diffusion-based noise elimination leads to blurring of the
structure information because it applies the same smoothing
strength to all the pixels regardless of their region characteristics.
To preserve the structure information of a given image, the AD
model introduces a diffusivity function (g(�)) that generates a time
and spatially varying diffusion coefficient. As proposed in Perona
and Malik [18], the diffusivity function is defined as:

gðrIÞ ¼ 1= 1þ ðrI=KÞ2
� �

or gðrIÞ ¼ e�ðrI=KÞ2 ; ð2Þ

where K denotes the diffusion threshold. The diffusivity function is
a monotonically decreasing function satisfying g(x) ? 0 as x ?1.
Depending on the determination of the diffusivity function and
the K value, the performance of the AD model can be altered signif-
icantly. In particular, K can determine the backward and forward
diffusion modes. To explain diffusion modes, we introduce the fol-
lowing flux function [18]:

/ðrIÞ ¼ gðrIÞ � rI: ð3Þ

As shown in Fig. 1, the sign of the gradient of the flux function,
(/0(rI)), reverses at the K value. If /0(rI) > 0, the forward mode is
activated to smooth the gray level variation. Otherwise, the back-
ward mode is activated to inhibit smoothing and to increase the
slope of the edges, resulting in an enhancement in their sharpness.
In the forward mode, if the value of K is large, it leads to over-
smoothing and results in the blurring of the structure information.
Conversely, if the value of K is small, the smoothing strength is
inadequate to successfully eliminate the image noise. This leads
to a requirement for numerous iterative operations to remove
image noise. Hence, it is important to select an optimal value of
K to maximize the quality of the denoised image.

To apply the PDE obtained in a continuous domain (Eq. (1)) to a
discrete two-dimensional image domain, and thereby, to find its
solution, the following numerical approximation is used:

Itþ1ðx; yÞ ¼ Itðx; yÞ þ Dt
XD

d¼1

gðrIt
dðx; yÞÞ � rIt

dðx; yÞ
� �

; ð4Þ

where It(x,y) denotes the gray level of a pixel (x,y) at time t. Dt is a
time step and D and d are the total number of diffusion directions
and direction indexes, respectively. In the case of two-dimensional
(2D) image domains, D is set to four, considering the neighboring
pixels on the north, south, west, and east sides. rIt

d represents the
gradient between the original and neighboring pixels in each direc-
tion at time t. If D is set to eight, the gradients of the diagonal neigh-
bors, north–west, northeast, south–west, and southeast can be
calculated in a similar manner.

In Eq. (4), it is important to select a proper Dt value when deter-
mining the diffusion rate. If the selected value of Dt is small, sev-
eral numerical iterations may be required to determine the
solution. Conversely, although selecting a large Dt value may

Fig. 1. Normalized flux function, /(rI).
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