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a b s t r a c t

Semi-supervised learning (SSL) is attractive for labeling a large amount of data. Motivated from cluster
assumption, we present a path-based SSL framework for efficient large-scale SSL, propagating labels
through only a few important paths between labeled nodes and unlabeled nodes. From the framework,
minimax paths emerge as a minimal set of important paths in a graph, leading us to a novel algorithm,
minimax label propagation. With an appropriate stopping criterion, learning time is (1) linear with respect
to the number of nodes in a graph and (2) independent of the number of classes. Experimental results
show the superiority of our method over existing SSL methods, especially on large-scale data with many
classes.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Collecting a large amount of data has been increasingly easier
and cheaper than before, while assigning class labels still requires
expensive human efforts. When labels are only given for a small
number of ‘‘labeled data’’, semi-supervised learning (SSL) [1] is
attractive for labeling the remaining ‘‘unlabeled data’’ automati-
cally. Not only learning from insufficient label information, SSL
further exploits intrinsic cluster or manifold structures from plenty
of unlabeled data.

We consider semi-supervised multi-class classification on a
partially-labeled sparse graph: nodes correspond to data points;
edges connect pairs of sufficiently close data points; class labels
are given for a few ‘‘labeled nodes’’. Many graph-based SSL
methods have been proposed (e.g., [2–5]), but their large computa-
tional costs limit applicability to real-world problems.1

In this paper, we present an efficient path-based SSL method:
labels of labeled nodes are propagated into unlabeled nodes
through only a few important paths lying in high-density regions,
so-called minimax paths, thereby reducing the computational cost
significantly. When cluster assumption holds [8], i.e., points

connected via paths through high-density regions tend to have
the same label, labels are propagated within the same cluster,
not further into different clusters, so that our method can perform
robust classification.

We briefly introduce existing work on graph-based SSL
(Section 2), and propose our path-based SSL framework (Section 3).
From the framework, minimax paths emerge as a minimal set of
paths lying in high-density regions, leading to our minimax label
propagation algorithm that propagates labels through only mini-
max paths (Section 4). Compared to existing SSL methods, some
important contributions of our work are as follows (Section 5):

1. With an appropriate stopping criterion, our method requires
OðNÞ time and space for a graph of N nodes and C classes.

2. The computational cost is independent of the number of classes.

That is, our method is good for large-scale data with many classes.
On a large graph of N ¼ 106 nodes and C ¼ 104 classes, our method
ran several orders of magnitude faster than existing SSL methods,
while achieving comparable classification performance (Section 6).

2. Semi-supervised classification on partially-labeled graphs

We briefly introduce graph-based SSL. A dataset,
X ¼ fx1; . . . ; xNg, forms a graph, G ¼ ðX ; EÞ, such that each node
in G corresponds to each data point xi, and the nodes are linked
by edges, E ¼ fði; jÞg. Each node belongs to one of C classes,
C ¼ f1; . . . ;Cg, but the true class labels, Y ¼ fyi 2 CgN

i¼1, are known
for only the first Nl (� N) labeled nodes, fxigNl

i¼1. Graph-based SSL
predicts labels for the remaining unlabeled nodes, fxigN

i¼Nlþ1.
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1 On a sparse graph of N nodes and C classes, (1) OðCN2Þ time in [2] to solve C max-
flow problems by recent algorithms, e.g., [6]; (2) OðCN2Þ time in [3,4] to solve C sparse
linear systems by iterative methods, e.g., [7]; (3) OðN3Þ time in [5] due to a dense
kernel matrix included in linear systems. All those methods require OðCNÞ space to
store the solutions.
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SSL is commonly performed on a K-nearest neighbor (K-NN)
graph, connecting two nodes xi and xj (i.e., ði; jÞ 2 E) only if they
are K-NN of each other in the dataset. K is usually small (5-20),
and it bounds the number of edges incident to a node, so-called
degree. Not only for computational efficiency by retaining sparsity,
k-NN graphs also prevent incorrect information propagation
between semantically unrelated nodes [9].

SSL performs prediction such that two nodes linked in G are likely
to have the same predicted label. Let a real-valued vector f i 2 RC rep-
resent ‘‘soft assignments’’ of each node xi to C classes. Also, let a
binary 1-of-C-coding vector yi 2 f0;1g

C represent a ‘‘hard assign-
ment’’ of a labeled node xi to its true class label yi, such that
½yi�c ¼ 1 if c ¼ yi and ½yi�c ¼ 0 otherwise. [3] proposed minimizing
an objective function,

Eðf Þ ¼
X
ði;jÞ2E

wði; jÞ f i � f j

�� ��2 s:t: f i ¼ yi for i ¼ 1; . . . ;Nl; ð1Þ

where wði; jÞ denotes the similarity between two data points,
defined as wði; jÞ ¼ expð�b xi � xj

�� ��2Þ for some b > 0. After minimi-
zation, predicted labels can be chosen as fi ¼ argmaxc¼1;...;C ½f i�c for
unlabeled nodes.

Minimizing Eq. (1) (or similar variants, e.g., [4]) requires large
computational cost: OðCN2Þ time and OðCNÞ space. Various
approximation methods have been proposed for improving scala-
bility. Approximation by M (�N) centroids requires OðM2CNÞ time
and OðMCNÞ space, where M determines the trade-off between the
scalability and the approximation quality [10–13]. In manifold
learning, similar techniques using Nyström approximation were
proposed [14,15]. Other approaches for scalable SSL include divid-
ing each dimension of data into grid [16], enforcing a small number
of support vectors through sparsified constraints [17], and aggre-
gating predictions along each dimension [18].

3. Path-based SSL framework: Lp norm aggregation over paths

We propose a novel approach for SSL based on paths between
nodes. First, we define a set of all possible paths between xi and xj

in G ¼ ðX ; EÞ:

Aij ¼ a ¼ ða0; a1; . . . ; amÞjm P 1; ða‘; a‘þ1Þ 2 E for all ‘; a0 ¼ i;f
am ¼ j; a1; . . . ; am�1 – jg: ð2Þ

A path a 2 Aij connects xi and xj through consecutive edges,
ða0; a1Þ; ða1; a2Þ; . . . ; ðam�1; amÞ. We assign an intermediate cost to each
edge, defined as cða‘; a‘þ1Þ ¼ xa‘ � xa‘þ1

�� ��. Then we define total cost of
a path as the Lp norm of the intermediate costs along the path:

cðaÞk kp ¼
X
‘

cða‘; a‘þ1Þp
" #1=p

ð3Þ

and the path-based similarity as the sum of scores over all possible
paths between xi and xj:

sij ¼
X
a2Aij

exp �1
T

cðaÞk kp

� �
; ð4Þ

where the score of each path follows an exponential decay with the
total cost.2 Our SSL framework is to compute f i for unlabeled nodes
by aggregating yj of labeled nodes, weighted by sij between them:

f i ¼
XNl

j¼1

sijyj ¼
XNl

j¼1

X
a2Aij

exp �1
T

cðaÞk kp

� �
yj: ð5Þ

Some path-based (dis) similarity measures (e.g., [21,20,22])
have been derived from similar frameworks. They are known to
capture underlying, arbitrary-shaped clusters in a dataset very well
(e.g., Fig. 1(b)), but computing them requires to aggregate scores of
all possible paths between nodes, Aij, leading to OðN3Þ time and
OðN2Þ space. Now we show that our framework can selectively
aggregate scores of a few paths that are important for capturing
clusters, thereby improving efficiency as well as reflecting underly-
ing clusters (e.g., Fig. 1(c)).

The key ingredients of our framework is two parameters, T and p,
in Eq. (4). The decay constant, 0 < T <1, represents a preference for
paths of smaller total costs. As T decreases, the score of a path of lar-
ger total cost decays much faster. Thus, only a few paths (whose to-
tal costs are smaller than others) have significant effects on sij,
whereas all the other paths become relatively negligible. In short,
smaller T reduces the number of important paths for computing sij.

The Lp norm determines the importance of a path. As p
increases, larger intermediate costs have greater effect on the total
cost (Fig. 2(a) and (b)), so that a ‘‘compact path’’ that consists of
short edges has smaller Lp norm (i.e., more important for comput-
ing sij) than a ‘‘loose path’’ containing long edges. The idea comes
from cluster assumption [8], saying that points connected via paths
through high-density regions tend to have the same label. Since a
cluster is a high-density region whose data points are connected
via compact paths, larger p makes sij within the same cluster tend
to be larger. Fig. 2(c) shows an example.

Fig. 3 illustrates the scores of paths according to varying T and p:

1. As p increases (from left to right), compact paths in the high-
density region have higher scores than loose paths, leading to
robust classification by penalizing the effects of labeled nodes
in different clusters.

2. As T decreases (from top to bottom), fewer paths have signifi-
cant scores and all the other paths become relatively negligible,
brining efficiency gains by reducing the number of effective
paths for computation.

4. Minimax label propagation

Now we consider the extreme case, T ! 0 and p!1. When
T ! 0, every expð� � �Þ in Eq. (4) becomes negligible, except for the
score of the smallest Lp norm:

sij !max
a2Aij

exp �1
T

cðaÞk kp

� �
ð6Þ

and Eq. (5) also converges as

f i ! yj� or simply f i ¼ yj� ; where j� ¼ arg max
j¼1;...;Nl

sij; ð7Þ

i.e., f i 2 RC is simplified to the integer class label, fi 2 f1; . . . ;Cg,
which is propagated from a labeled node (denoted by xj� ) through
only one path whose Lp norm is smallest. Since sij takes only the low-
est Lp norm, Eq. (7) can be rewritten in terms of a distance measure,
denoted by dðpÞij :

fi ¼ yj� ; where j� ¼ arg min
j¼1;...;Nl

dðpÞij :¼min
a2Aij

cðaÞk kp

� �
: ð8Þ

When p ¼ 1; dðpÞij is the shortest path distance, computed along
the shortest path between xi and xj (e.g., bottom-left panel in
Fig. 3). When p!1; dðpÞij is the largest intermediate cost,
cðaÞk k1 ¼max‘cða‘; a‘þ1Þ, computed along the most compact path

between xi and xj (e.g., bottom-left panel in Fig. 3). The path is also
referred to as ‘‘minimax path’’ [23], and the cost is called ‘‘minimax
distance’’, denoted by dij:

dij ¼min
a2Aij

cðaÞk k1 ¼ min
a2Aij

max
‘

cða‘; a‘þ1Þ
� �

: ð9Þ
2 Since we allow revisits of intermediate nodes, Aij is an infinite set. However, Eq.

(4) still converges in some cases, e.g., when p ¼ 1; sij becomes the same form as a
partition function Z proposed in [19].
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