
Suboptimal branch and bound algorithms for feature subset selection:
A comparative study q

Songyot Nakariyakul ⇑
Department of Electrical and Computer Engineering, Thammasat University, 99 Moo 18 Phaholyothin Rd., Khlongluang, Pathumthani 12120, Thailand

a r t i c l e i n f o

Article history:
Received 3 September 2013
Available online 20 March 2014

Keywords:
Branch and bound algorithm
Dimensionality reduction
Feature selection
Look-ahead search strategy
Suboptimal solution

a b s t r a c t

The branch and bound algorithm is an optimal feature selection method that is well-known for its
computational efficiency. However, when the dimensionality of the original feature space is large, the
computational time of the branch and bound algorithm becomes very excessive. If the optimality of
the solution is allowed to be compromised, one can further improve the search speed of the branch
and bound algorithm; the look-ahead search strategy can be employed to eliminate many solutions
deemed to be suboptimal early in the search. In this paper, a comparative study of the look-ahead scheme
in terms of the computational cost and the solution quality on four major branch and bound algorithms is
carried out on real data sets. We also explore the use of suboptimal branch and bound algorithms on a
high-dimensional data set and compare its performance with other well-known suboptimal feature
selection algorithms.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In many pattern recognition applications, selecting a represen-
tative subset of features from an original feature set is an essential
pre-processing step. This process is termed feature selection
[7,10,11]. Not only does feature selection reduce the cost of
collecting irrelevant and redundant features, but it also improves
the prediction performance of the predictors. In several data sets
such as gene expression data [9] and hyperspectral remote sensing
images [20] that contain more than hundreds of features, use of
feature selection is mandatory. Thus, developing effective feature
selection algorithms has been the focus of much work in statistical
pattern recognition.

A feature selection technique usually requires an effective
search strategy for finding the best subset of d features from an
original set of D features and a criterion function J for assessing
the quality of the selected feature subset. In general, a larger value
of criterion function J usually indicates a better feature subset.
Based on the performance, feature selection techniques in the liter-
ature can be categorized into two basic strategies: suboptimal and
optimal methods. Suboptimal feature selection techniques select a
good subset with a large (not necessary the largest) J value,
whereas optimal search algorithms find the best (optimal) subset

that yields the largest criterion function J value. Suboptimal meth-
ods include sequential search [15,19] and randomized search
[8,21] algorithms. These methods are relatively fast and suitable
for high-dimensional problems, where the number of original fea-
tures is over 50. Optimal feature selection algorithms include
exhaustive search and the branch and bound (BB) algorithm [16]
and its variants. Exhaustive search is a brute-force approach that
evaluates a given criterion function J for all possible combinations
of d-dimensional subsets and chooses the best subset. Exhaustive
search is only practical for low-dimensional problems (D 6 30).
The BB algorithm, on the other hand, has received much more
attention from data mining researchers, since it explores the search
space more efficiently than an exhaustive search. The BB algorithm
organizes the search to reject many subsets that are guaranteed to
be suboptimal without computing their J values. It has been suc-
cessfully employed in many tasks such as minimizing the total
completion time in a job scheduling problem [17], achieving an
optimal facility layout in a manufacturing environment [22], and
optimizing a reliable optical network design [2].

Although many advanced versions [5,14,24,25] of the BB
algorithm have been proposed to improve the search speed of
the original BB algorithm, the computational time of the BB algo-
rithm is still very excessive when the dimensionality D of the
original feature space reaches a few dozens or more. However, if
the bound of the BB algorithm is relaxed and the optimality of
the solution is allowed to be compromised, the search speed can
be greatly accelerated [16], which makes the BB algorithm feasible

http://dx.doi.org/10.1016/j.patrec.2014.03.002
0167-8655/� 2014 Elsevier B.V. All rights reserved.

q This paper has been recommended for acceptance by J. Yang.
⇑ Tel.: +66 264 3001x3148; fax: +66 2564 3021.

E-mail address: nsongyot@engr.tu.ac.th

Pattern Recognition Letters 45 (2014) 62–70

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec

http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.03.002&domain=pdf
http://dx.doi.org/10.1016/j.patrec.2014.03.002
mailto:nsongyot@engr.tu.ac.th
http://dx.doi.org/10.1016/j.patrec.2014.03.002
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


for high-dimensional problems. In this work, we are interested in
studying the performance of the suboptimal BB algorithm.

This paper has two main objectives. The first objective is to
investigate the performance of the BB algorithm when the optimal-
ity of the algorithm is not retained. We explore a tradeoff between
the optimal solutions of selected feature subsets and the reduced
execution time. Narendra and Fukunaga [16] were the first group
who studied the suboptimal solutions of the BB algorithm. Since
then, many improved versions of the BB algorithm [14,24,25] have
been proposed, but, to the best of our knowledge, only Nakariyakul
[13] carried out a comparative study of the suboptimal solutions of
the basic BB algorithm with those of only one of its recent
improvements. We analyze the suboptimal solutions of four major
BB algorithms in the literature and note the advantages and disad-
vantages of each version of the BB algorithm using experimental
results for real data sets. The second objective of this paper is to
explore the possibility of using the suboptimal BB algorithm on
high-dimensional data, for which use of the optimal BB algorithm
is prohibitive. We compare the performance of a suboptimal BB
algorithm with other well-known suboptimal feature selection
algorithms on two high-dimensional data sets.

This paper is organized into five sections. Section 2 presents an
overview of the basic BB algorithm and prior improvements to it.
We review the scheme to incorporate in the branch and bound
algorithm for suboptimal solutions in Section 3. Experimental re-
sults for four data sets are given in Section 4, and conclusions are
advanced in Section 5.

2. The branch and bound algorithm and its improvements

In this section, the BB algorithm and prior improvements to it
are discussed. The BB algorithm was first proposed by Narendra
and Fukunaga [16] and is referred to as the basic BB algorithm in
this paper. It requires that the criterion function J satisfies monoto-
nicity. That is, assume that {y1,y2, . . . ,yi} is a subset of {y1,y2, . . . ,yj}
for i < j, the monotonicity property of the criterion function
requires that the J values of the two sets, Y n fy1; y2; . . . ; yig and
Y n fy1; y2; . . . ; yjg, fulfill

JðY n fy1; y2; . . . ; yigÞP JðY n fy1; y2; . . . ; yjgÞ; ð1Þ

where Y n fy1; y2; . . . ; yjg denotes removing the subset of j features
y1,y2, . . . ,yj from the feature set Y. Note that a subset with a larger
J value is better than one with a smaller J value.

To find the optimal subset of d features from an original set of D
features, the basic BB algorithm selects D � d features to be

discarded by constructing a solution tree. An example of the solu-
tion tree corresponding to selecting the best d = 2 features out of
D = 5 total features is shown in Fig. 1. The numbers in parenthesis
next to each node in Fig. 1 refer to the set of features remaining at
that node. The root of the tree (the top) corresponds to the set of all
five features, and the leaves at the bottom of the tree correspond to
all ten possible subsets of two features. The number on a branch
refers to the number of the feature removed as the search traverses
that branch. The level number denotes the total number of features
that have been omitted from the root at that level. The problem is
to find the best node (leaf) at the bottom of the tree (level D � d)
with the largest J value by exploring the tree with the fewest num-
ber of J calculations. Here, successor nodes for a given node refer to
all nodes below that node. For instance, the successor nodes for
node (1, 3, 4, 5) in Fig. 1 are nodes (1, 4, 5) and (1, 3, 5) at level
2 and nodes (1, 5), (1, 4) and (1, 3) at level 3.

To locate the best leaf (solution) of the tree, the basic BB algo-
rithm starts the search at the top of the tree (level 0), and all nodes
at level-1 are analyzed. The successor nodes of the node with the
largest J value are further explored, and the search continues to
the leaves of the tree. The current best subset (leaf) is found with
an initial bound B for the criteria function J. This bound B is a lower
bound that provides the best J value of d features found so far in
the search, i.e.,

B ¼ JðY n fy�1; y�2; . . . ; y�D�dgÞ; ð2Þ

where fy�1; y�2; . . . ; y�D�dg is the set of D�d features that, when re-
moved from the original set Y of D features, gives the best J value
found so far. The algorithm then backtracks to any unexplored nodes
at previous levels. If the J value of a node at level k is less than B (i.e.,
JðY n fy1; y2; . . . ; ykgÞ < B, where k < D�d and each variable yi takes
on values in {1,2, . . .,D}), then due to the monotonicity property of
J in Eq. (1),

JðY nfy1; . . . ;yk;ykþ1; . . . ;yD�dgÞ<B for all possible fykþ1; . . . ;yD�dg
ð3Þ

This means that if J < B for a node, its successor nodes (leaves) at
the bottom of the tree can be eliminated because they cannot be
the optimal subset of d features. The BB algorithm can thus effi-
ciently cut off many sub-trees. If J > B for a node, its successor
nodes are explored further (as long as their J values remain larger
than B). If a new different full path with a J > B is found, the bound B
is updated with the new larger J value. The search and backtracking
continues until all leaves in the tree are either explored or cut off
from the tree; thus, the BB algorithm gives the optimal solution.

(1,2,3,4,5)

(2,3,4,5)

1 2

2

3

3

3

34 4

54 4 45 5 5 5 5

4

(1,3,4,5) (1,2,4,5)

(3,4,5) (2,4,5) (2,3,5) (1,4,5) (1,3,5) (1,2,5)

(4,5) (3,5) (3,4) (2,5) (2,4) (2,3) (1,5) (1,4) (1,3) (1,2)

Level 0

Level 1

Level 2

Level 3

Fig. 1. The solution tree for the basic BB algorithm when d = 2 and D = 5.

S. Nakariyakul / Pattern Recognition Letters 45 (2014) 62–70 63



Download English Version:

https://daneshyari.com/en/article/534290

Download Persian Version:

https://daneshyari.com/article/534290

Daneshyari.com

https://daneshyari.com/en/article/534290
https://daneshyari.com/article/534290
https://daneshyari.com

