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a b s t r a c t

Many modern clustering methods employ a non-convex objective function and use iterative optimization
algorithms to find local minima. Thus initialization of the algorithms is very important. Conventionally
the starting guess of the iterations is randomly chosen; however, such a simple initialization often leads
to poor clusterings. Here we propose a new method to improve cluster analysis by combining a set of
clustering methods. Different from other aggregation approaches, which seek for consensus partitions,
the participating methods in our method are used consequently, providing initializations for each other.
We present a hierarchy, from simple to comprehensive, for different levels of such co-initializations.
Extensive experimental results on real-world datasets show that a higher level of initialization often
leads to better clusterings. Especially, the proposed strategy is more effective for complex clustering
objectives such as our recent cluster analysis method by low-rank doubly stochastic matrix decomposi-
tion (called DCD). Empirical comparison with three ensemble clustering methods that seek consensus
clusters confirms the superiority of improved DCD using co-initialization.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cluster analysis plays an essential role in machine learning and
data mining. The aim of clustering is to group a set of objects in
such a way that the objects in the same cluster are more similar
to each other than to the objects in other clusters, according to a
particular objective. Many clustering methods are based on
objective functions which are non-convex. Their optimization gen-
erally involves iterative algorithms which start from an initial
guess. Proper initialization is critical for getting good clusterings.

For simplicity, random initialization has been widely used,
where a starting point is randomly drawn from a uniform or other
distribution. However, such a simple initialization often yields
poor results and the iterative clustering algorithm has to be run
many times with different starting points in order to get better
solutions. More clever initialization strategies are thus required
to improve efficiency.

Many ad hoc initialization techniques have been proposed for
specific clustering methods, for example, specific choices of the
initial cluster centers of the classical k-means method (see e.g.
[1–4]), or singular value decomposition for clustering based on
nonnegative matrix factorization [5,6]. However, there seems to

be no initialization principle that would be commonly applicable
for a wide range of iterative clustering methods. Especially, there
is little research on whether one clustering method can benefit
from initializations by the results of another clustering method.

In this paper, we show experimentally that the clusterings can
usually be improved if a set of diverse clustering methods provide
initializations for each other. We name this approach co-initializa-
tion. We present a hierarchy of initializations towards this direc-
tion, where a higher level represents a more extensive strategy.
At the top are two levels of co-initialization strategies. We point
out that despite their extra computational cost, these strategies
can often bring significantly enhanced clustering performance.
The enhancement is especially significant for more complex
clustering objectives, for example, Probabilistic Latent Semantic
Indexing [7], and our recent clustering method by low-rank doubly
stochastic matrix decomposition (called DCD) [8].

Our claims are supported by extensive experiments on nineteen
real-world clustering tasks. We have used a variety of datasets
from different domains such as text, vision, and biology. The
proposed initialization hierarchy has been tested using eight
state-of-the-art clustering methods. Two widely used criteria,
cluster purity and Normalized Mutual Information, are used to
measure the clustering performance. The experimental results
verify that a higher level initialization in the proposed hierarchy
often achieve better clustering performance.

Ensemble clustering is another way to combine a set of cluster-
ing methods. It aggregates the different clusterings into a single
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one. We also compared co-initialization with three prominent
ensemble clustering methods. The comparison results show that
the improved DCD using co-initializations outperforms these
ensemble approaches that seek a consensus clustering.

In the following, Section 2 reviews briefly the recently intro-
duced Data-Cluster-Data (DCD) method. It is a representative
clustering method among those that strongly benefit from co-ini-
tializations, and will be shown to be overall the best method in
the experiments. Then Section 3 reviews related work on ensemble
clustering, which is another way of combining a set of base cluster-
ing methods. In Section 4, we present our novel co-initialization
method and describe the initialization hierarchy. Experimental set-
tings and results are reported in Section 5. Section 6 concludes the
paper and discusses potential future work.

2. Clustering by DCD

Some clustering methods such as Normalized Cut [9] are not
sensitive to initializations but tend to return less accurate cluster-
ing (see e.g. [10], page 8, [8,11], and Section 5.3). On the other
hand, some methods can find more accurate results but require
careful initialization. The latter kind of methods can benefit more
from our co-initialization strategy, to be introduced in Section 4.
Recently we proposed a typical clustering method of the latter
kind, which is based on Data-Cluster-Data random walk and thus
called DCD [8]. In this section we recapitulate the essence of
DCD. It belongs to the class of probabilistic clustering methods. Gi-
ven n data samples and r clusters, denote by PðkjiÞ the probability
of assigning the ith sample to the kth cluster, where i ¼ 1; . . . ;n and
k ¼ 1; . . . ; r.

Suppose the similarities between data items are precomputed
and given in an n� n nonnegative symmetric sparse matrix A.
DCD seeks an approximation to A by another matrix bA whose ele-
ments correspond to the probabilities of two-step random walks
between data points through clusters. Let i; j, and v be indices for
data points, and k and l for clusters. Then the random walk proba-
bilities are given as

bAij ¼ Pðij jÞ ¼
X

k

PðijkÞPðkjjÞ ¼
X

k

PðkjiÞPðkjjÞX
v

PðkjvÞ
; ð1Þ

by using the Bayes formula and the uniform prior PðiÞ ¼ 1=n.
The approximation is given by the Kullback–Leibler (KL-) diver-

gence. This is formulated as the following optimization problem
[8]:

minimize
PP0

DKLðAjjbAÞ ¼X
ij

Aij log
AijbAij

� Aij þ bAij

 !
; ð2Þ

where bAij ¼
P

k
PikPjkP

v
Pvk

with Pik ¼ PðkjiÞ, subject toP
kPik ¼ 1; i ¼ 1; . . . ;n.
Denote r ¼ rþ �r� as the gradient of DKLðAjjbAÞ with respect

to P, where rþ and r� are the positive and (unsigned) negative
parts of r, respectively. The optimization is solved by a Majoriza-
tion–Minimization algorithm [12–15] that iteratively applies a
multiplicative update rule:

Pik  Pik
r�ikai þ 1
rþikai þ bi

; ð3Þ

where ai ¼
P

l
Pil
rþ

il
and bi ¼

P
lPil
r�il
rþ

il
.

The preprocessing of DCD employs the common approximation
of making A sparse by zeroing the non-local similarities. This
makes sense for two reasons: first, geodesics of curved manifolds
in high-dimensional spaces can only be approximated by Euclidean
distances in small neighborhoods; second, most popular distances

computed of weak or noisy indicators are not reliable over long
distances, and the similarity matrix is often approximated by the
K-Nearest Neighbor graph with good results, especially when n is
large. With a sparse A, the computational cost of DCD is OðjEj � rÞ
for jEj nonzero entries in A and r clusters. In the experiments we
used symmetrized and binarized K-Nearest-Neighbor graph as A
(K � n). Thus the computational cost is OðnKrÞ.

Given a good initial decomposing matrix P, DCD can achieve
better cluster purity compared with several other state-of-the-art
clustering approaches, especially for large-scale datasets where
the data points situate in a curved manifold. Its success comes from
three elements in its objective: (1) the approximation error
measure by Kullback–Leibler divergence takes into account sparse
similarities; (2) the decomposing matrix P as the only variable to
be learned contains just enough parameters for clustering; and
(3) the decomposition form ensures relatively balanced clusters
and equal contribution of each data sample.

What remains is how to get a good starting point. The DCD opti-
mization problem is harder to solve than conventional NMF-type
methods based on Euclidean distance in three aspects: (1) the
geometry of the KL-divergence cost function is more complex;
(2) DCD employs a structural decomposition where P appears more
than once in the approximation, and appears in both numerator
and denominator; (3) each row of P is constrained to be in the
ðr � 1Þ-simplex. Therefore, finding a satisfactory DCD solution
requires more careful initialization. Otherwise the optimization
algorithm can easily fall into a poor local minimum.

Yang and Oja [8] proposed to obtain the starting points by
pre-training DCD with regularization term ð1� aÞ

P
ik log Pik. This

corresponds to imposing Dirichlet priors over the rows of P. By
varying a, the pre-training can provide different starting points
for multiple runs of DCD. The final result is given by the one with
the smallest DCD objective of Eq. 2. This initialization strategy can
bring improvement for certain datasets, whereas the enhancement
remains mediocre as it is restricted to the same family of clustering
methods. In the remaining, we investigate the possibility to obtain
good starting points with the aid of other clustering methods.

3. Ensemble clustering

In supervised machine learning, it is known that combining a
set of classifiers can produce better classification results (see e.g.
[16]). There have been also research efforts with the same spirit
in unsupervised learning, where several basic clusterings are com-
bined into a single categorical output. The base results can come
from results of several clustering methods, or the repeated runs
of a single method with different initializations. In general, after
obtaining the bases, a combining function, called consensus func-
tion, is needed for aggregating the clusterings into a single one.
We call such aggregating methods ensemble cluster analysis.

Several ensemble clustering methods have been proposed. An
early method [17] first transforms the base clusterings into a
hypergraph and then uses a graph-partitioning algorithm to obtain
the final clusters. Gionis et al. [18] defined the distance between
two clusterings as the number of pairs of objects on which the
two clusterings disagree, based on which they formulated the
ensemble problem as the minimization of the total number of
disagreements with all the given clusterings. Fred and Jain [19] ex-
plored the idea of evidence accumulation and proposed to summa-
rize various clusterings in a co-association matrix. The incentive of
their approach is to weight associations between sample pairs by
the number of times they co-occur in a cluster from the set of given
clusterings. After obtaining the co-association matrix, they applied
the agglomerative clustering algorithm to yield the final partition.
Iam-On et al. [20] introduced new methods for generating two
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