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a b s t r a c t

Over recent years the popularity of time series has soared. Given the widespread use of modern informa-
tion technology, a large number of time series may be collected. As a consequence there has been a dra-
matic increase in the amount of interest in querying and mining such data. A vital component in many
types of time series analyses is the choice of an appropriate dissimilarity measure. Numerous measures
have been proposed to date, with the most successful ones based on dynamic programming. One of such
measures is longest common subsequence (LCSS). In this paper, we propose a parametrical extension of
LCSS based on derivatives. In contrast to well-known measures from the literature, our approach consid-
ers the general shape of a time series rather than point-to-point function comparison. The new dissim-
ilarity measure is used in classification with the nearest neighbor rule. In order to provide a
comprehensive comparison, we conducted a set of experiments, testing effectiveness on 47 real time
series. Experiments show that our method provides a higher quality of classification compared with LCSS
on examined data sets.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Time series classification has been studied extensively by the
machine learning and data mining communities. Such series are
suitable for representing social, economic and natural phenomena,
medical observations, and results of scientific and engineering
experiments. The crucial point in time series classification is how
to measure the dissimilarity of time series (a very good overview
of dissimilarity measures can be found in [9]). The simplicity and
efficiency of Euclidean distance [11] makes this the most popular
dissimilarity measure in time series data mining [1,18]. It requires
that both input sequences be of the same length, and it is sensitive
to distortions and shifting along the time axis [29,25]. Such
problems can be handled by elastic dissimilarity measures such
as Dynamic Time Warping (DTW) [5] and Longest Common
SubSequence (LCSS) [2,28]. DTW searches for the best alignment
between two time series, attempting to minimize the distance be-
tween them. LCSS finds the length of the longest matching subse-
quence. Compared with Euclidean distance, DTW and LCSS are
more elastic, supporting local time shifts and variations in lengths
of pairs of time series, but they are also more expensive to

compute. Of the three measures, LCSS is the least sensitive to noise,
because it includes a threshold to define a ‘‘match’’ [28].

The effectiveness of the nearest neighbor classifier depends on
the dissimilarity measure used to compare objects in the classifica-
tion process. At present, the dissimilarity functions used in time
series classification mostly involve point-to-point comparison of
time series. The measures often reduce such distortions as occur
if two time series do not have the same length or are locally out
of phase, etc. It seems that in the classification domain there could
be objects for which function value comparison is not sufficient.
There could be cases where assignment to one of the classes de-
pends on the general shape of objects rather than on strict function
value comparison. An object associated with a function that re-
sponds to its variability in ‘‘time’’ is the derivative of the function.
The function’s derivative determines areas where the function is
constant, increases or decreases, and the intensity of the changes.
The derivative determines the general shape of the function rather
than the value of the function at a particular point. The derivative
shows what happens in the neighborhood of the point. While the
first derivative gives some information about the shape of the func-
tion (increasing or decreasing), the second derivative adds addi-
tional information as to where the function is convex or concave.
We cannot expect that it will be sufficient to compare only time
series derivatives. It seems that the best approach is to create a
method which considers both the function values of time series
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and values of the derivative (or derivatives) of the function (shape
comparison). The intensity of the influence of these approaches
should be parameterized. Then we can expect that for different
time series the method will select the appropriate intensities of
these comparisons and give the best classification results.

In this paper we construct a dissimilarity measure that considers
the above-mentioned approaches to time series classification.
Consequently we are able to deal with situations where the inves-
tigated sequences are not different enough. For a dissimilarity func-
tion, a new parameterized family of dissimilarity measures is
formed, where a fixed dissimilarity measure is used to compute dis-
similarities of time series (function values) and their variability in
‘‘time’’ (dissimilarities of their derivatives). The new dissimilarity
functions so constructed are used in the nearest neighbor classifica-
tion method. The use of derivatives in time series classification is
not a novelty. Some ideas of dissimilarity between trajectories
using derivatives were proposed by Kosmelj [20] and Carlier [6].
They used the concepts of velocity and acceleration to measure
the dissimilarities between trajectories in cluster analysis. D’Urso
and Vichi [10] and Coppi et al. [7] developed this idea and used it
to perform cluster analysis of longitudinal data. The use of deriva-
tives with DTW was proposed by Keogh and Pazzani [17]. However
they used only the dissimilarity between the derivatives, rather
than the standard dissimilarity between the time series. Górecki
[13] and Górecki and Łuczak [14] presented results concerning
derivative DTW where just the first derivative is added, while
parameterization involves both the function and derivative. Such
an approach was shown to give very good results. Górecki and
Łuczak [15] also presented results where the second derivative is
added. The parametric approach makes it possible to adapt to the
data set, but without overtraining. Now we try to extend this meth-
odology to LCSS, which is a better method than DTW in the presence
of outliers [28] and generally is very close to the best dissimilarity
measure DTW [21].

In this paper we first review the concept of time series and the
longest common subsequence dissimilarity measure (Section 2). At
the end of that section we introduce our dissimilarity measure
based on derivatives. The data sets used and the experimental set-
up are described in Section 3. Section 4 contains the results of our
experiments on the described real data sets, as well as statistical
analysis of the results and analysis of the running times of the
investigated methods. Conclusions are given in Section 5.

2. Methods

2.1. Longest common subsequence

The longest common subsequence dissimilarity measure is a
variation of the edit dissimilarity measure used in speech recogni-
tion. The basic idea is to match two sequences by allowing them to
stretch, without rearranging the sequence of the elements but
allowing some elements to be unmatched or left out (e.g., outliers)
– whereas in Euclidean Distance and DTW, all elements from both
sequences must be used, even the outliers. The overall idea is to
count the number of pairs of points from the two sequences that
match. One point can never be associated twice with points of
the other sequence, so that the maximum number of associations
is the smaller length of the two sequences. The LCSS measure has
two parameters, d and e (Fig. 1). The constant d, which is usually
set to a percentage of the sequence length, is a warping threshold
and controls the window size for matching a given point from one
sequence to a point in another sequence. It controls how far in time
we can go in order to match a given point from one trajectory to a
point in another trajectory. The constant 0 < e < 1 is the matching
threshold: two points from two sequences are considered to match
if their distance is less than e.

Longest common subsequences of the time series x and y of
length n and m may be recursively defined as follows:

Lði; jÞ ¼

0 for i ¼ 0
0 for j ¼ 0
1þ L½i� 1; j� 1� for jxi � yjj < e and ji� jj 6 d

maxðL½i� 1; j�; L½i; j� 1�Þ in other cases

8>>><
>>>:

Lðn;mÞ contains the similarity between x and y, because it corre-
sponds to the length of the longest common subsequence of ele-
ments between time series x and y. To define the dissimilarity
between x and y, we can compute [24]:

LCSSðx; yÞ ¼ nþm� 2Lðn;mÞ
nþm

: ð1Þ

According to this definition, this measure takes values from

ð1� 2 minðn;mÞ
nþm Þ to 1. For two trajectories of equal length it takes val-

ues from 0 to 1.
Taking into account only sufficiently similar points, LCSS solves

the problem of the presence of noise, but does not satisfy the trian-
gle inequality [28], so it is not a distance metric. LCSS is robust to
noise and is expected to be more accurate than DTW in the pres-
ence of outliers.

2.2. Longest common subsequence based on derivatives

Let LCSS be the longest common subsequence dissimilarity
measure for two time series x and y.

2.2.1. 2D method
A dissimilarity measure which considers both the function val-

ues of time series and values of the first derivative is defined by:

DDLCSSðx; yÞ :¼ aLCSSðx; yÞ þ bLCSSðrx;ryÞ; ð2Þ

where rx and ry are the first discrete derivatives of x; y, and
a; b 2 ½0;1� are parameters. The discrete derivative of a time series
x with length n is defined by

rxðiÞ ¼ xðiþ 1Þ � xðiÞ; i ¼ 1;2; . . . ;n� 1: ð3Þ

2.2.2. 3D method
A dissimilarity measure which considers both the function val-

ues of time series and values of the first and second derivatives is
defined by:

2DDLCSSðx;yÞ :¼ aLCSSðx;yÞþbLCSSðrx;ryÞþcLCSSðr2x;r2yÞ; ð4Þ

where r2x and r2y are the second discrete derivatives of x; y, and
a; b; c 2 ½0;1� are parameters.

If the similarity measure in the above definitions is a metric,
then the new measures DDLCSS and 2DDLCSS are also metrics. In

Fig. 1. Matching within d in time and e in space. Everything outside the bounding
envelope can never be matched.
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