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a b s t r a c t

Kernel learning is one of the most important and recent approaches to constrained clustering. Until now
many kernel learning methods have been introduced for clustering when side information in the form of
pairwise constraints is available. However, almost all of the existing methods either learn a whole kernel
matrix or learn a limited number of parameters. Although the non-parametric methods that learn whole
kernel matrix can provide capability of finding clusters of arbitrary structures, they are very computa-
tionally expensive and these methods are feasible only on small data sets. In this paper, we propose a
kernel learning method that shows flexibility in the number of variables between the two extremes of
freedom degree. The proposed method uses a spectral embedding to learn a square matrix whose number
of rows is the number of dimensions in the embedded space. Therefore, the proposed method shows
much higher scalability compared to other methods that learn a kernel matrix. Experimental results
on synthetic and real-world data sets show that the performance of the proposed method is generally
near to the learning a whole kernel matrix while its time cost is very low compared to these methods.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many of the most famous machine learning and pattern recog-
nition methods use a (dis)similarity measure in their methods. Per-
formance of these methods (e.g., SVM, kNN, RBF networks,
k-means, etc.) is highly dependent on the used measure (i.e., dis-
tance metric, kernel function, etc.) and thus it is important to
choose a proper measure in them. In the last decade, several meth-
ods have been introduced to learn distance or kernel functions (or
matrices) instead of predefining them. Although distance and ker-
nel learning methods have been introduced for all categories of
supervised [1–9], unsupervised [10–16], and semi-supervised
[17–38] tasks, the most interest has been on semi-supervised tasks
where limited supervisory information is available.

The existing approaches to distance or kernel learning can be
categorized into: (i) explicitly finding a new representation of the
data that is more appropriate (e.g., for clustering or classification)

and then using an Euclidean distance metric (or inner product sim-
ilarity measure) in the transformed space. (ii) without explicitly
finding transformed data, just finding a proper distance metric or
kernel function. On the other hand, existing methods can also be
categorized into linear and non-linear methods. Indeed, some of
them [1,19–22] learn a linear transformation or equivalently a
Mahalanobis distance metric while others try to learn non-linearly
transformed data or learn a kernel matrix. Some of the existing
non-linear methods [29,33,35–38] indeed learn a linear transfor-
mation in a spectrally embedded space (obtained by spectral
analysis).

Distance and kernel learning are the most popular approaches
for semi-supervised clustering problems. In the semi-supervised
clustering tasks, along with unlabeled data, supervisory informa-
tion in the form of must-links and cannot-link constraints (on some
pairs of data) are available. Each must-link constraint implies two
data points should be in the same cluster and each cannot-link con-
straint implies two data points should be in different clusters. So far
many Mahalanobis distance learning [19–22] and kernel learning
methods [23–35] have been introduced for semi-supervised clus-
tering. Since former methods correspond to learning linear trans-
formations, they are not useful to match arbitrary shapes of
clusters. Nonetheless, kernel learning methods have been consid-
ered as a more proper approach that can learn non-linearity in
the structures of clusters. However, most of the existing kernel
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learning methods (for semi-supervised clustering) either show poor
flexibility [31–35] or show very low computational efficiency and
also poor generalization capability [24,25,28]. In fact, the methods
either learn a small number of parameters or learn a whole n � n
matrix where n denotes the number of data and thus the later
methods are usually very computationally expensive. Although
few recent methods [29,30,38] have tried to learn low rank kernel
matrices or learn smaller matrices, their optimization problems
are not such suitable for constrained clustering. In this paper, we
propose a method that can show flexibility between the two
extremes of free parameters. In the proposed method, an m �m
matrix is learned where m can be varied between 1 and n. More-
over, the proposed optimization problem is more suitable for learn-
ing a kernel matrix that is used in the kernel k-means clustering
algorithm [39]. Our method can balance between the available
supervisory information and the complexity of the transform to
avoid overfitting problems.

In this paper, we propose a novel spectral kernel learning
method that uses the data and constraints to find an appropriate
kernel matrix. This method is a non-linear metric learning method
for semi-supervised clustering that can compromise between flex-
ibility (of finding complex cluster structures) and computational
complexity. The proposed method learns an m �m matrix by solv-
ing a Semi-Definite Programming (SDP) problem. The proposed
method can also be considered as Mahalanobis metric learning in
a representation space obtained according to the geometrical
structure of the data. Indeed, we first embed the data in the repre-
sentation space using spectral embedding and then learn a Maha-
lanobis metric in this space.The major contributions of the
proposed method can be summarized as: first the proposed non-
parametric kernel learning method does not need to learn all ele-
ments of an n � n matrix. Indeed, we can specify the freedom
degree of kernel learning m (m can be much lower than n). Our
method can be scalable to large problems as opposed to the exist-
ing non-parametric kernel learning methods [23–28]. Second,
although all of the existing kernel learning methods for semi-
supervised clustering use the learned kernel in the kernel k-means
algorithm, they have not attend the relation between the kernel
learning phase and the clustering phase accurately. We intend to
learn a kernel that matches with the objective function of the
k-means clustering algorithm. Therefore, our proposed optimiza-
tion problem in the kernel learning phase is such that it prepares
a suitable kernel for the kernel k-means clustering algorithm.

The rest of this paper is organized as follows: In Section 2, first
we briefly introduce the background on spectral and kernel learn-
ing concepts and also the related studies. In Section 3, our pro-
posed method is formulated as an optimization problem and
solved accordingly. Experimental results and evaluations are given
in Section 4. Finally, Section 5 concludes the paper.

2. Background and related work

In this section, we introduce some preliminaries of spectral and
kernel-based methods, followed by some discussion on related
work.

2.1. Spectral and kernel-based methods

Let X ¼ fx1; x2; :::;xng be a set of data points and GðV;WÞ be a
similarity graph constructed on them. Thus, V is a set of vertices
corresponding to the data points and W is the weighted adjacency
matrix specified according to a similarity measure. There are some
popular ways to construct a similarity graph on data points [40]: (i)
e-nearest-neighbor graph, in which all the data points whose pair-
wise distances are smaller than e are connected; (ii) k-nearest

neighbor graphs, where vi is connected to vj when vj is among the
k-nearest neighbors of vi; and (iii) fully connected graph, where all
data points are simply connected with weighted edges. k-nearest
neighbors graph is the most famous way of constructing the simi-
larity graph that we also use in this paper.Graph Laplacian matrices
that are built based on weight matrix W have an important role in
most of spectral learning methods. The unnormalized and normal-
ized Laplacian matrices of G are respectively defined as L = D �W
and L ¼ D�1=2 LD�1=2 where D is the diagonal matrix whose diago-
nal elements are the degrees of the vertices of the graph

G Dii ¼
Pn

j¼1Wij

� �
. Both L and L are symmetric and positive semi-

definite matrices.
In the last decade, spectral graph theory has been extensively

used in clustering [41–43], embedding [44,45], and semi-super-
vised learning [46–49] problems. The spectral methods are based
on properties of matrices like the graph Laplacian. Dhillon et al.
[50] showed the theoretical relation between spectral clustering
and kernel k-means. Moreover, Bengio et al. [51] showed that
Laplacian eigenmap can be considered as a KPCA algorithm where
kernel matrix is constructed accordingly. Furthermore, many semi-
supervised learning methods [46–49] used the Laplacian matrix to
find a suitable kernel. Therefore, all of these spectral clustering,
embedding, and semi-supervised learning methods can be consid-
ered as kernel-based methods where the used kernel is con-
structed based on the Laplacian matrix or the similarity matrix.
According to the spectral graph theory, among the eigenvectors
of the Laplacian matrix, the smoother ones are more important
(i.e., the eigenspectrum of the graph Laplacian encodes smoothness
information over the graph) [40].

A kernel function is a real-valued positive semi-definite func-
tion k : X � X ! R. Indeed, k(x, y), can be considered as the dot
product of the mapped x, y in the kernel space (i.e.,
kðx; yÞ ¼ h/ðxÞ;/ðyÞi) and a distance metric can be found according
to this positive definite kernel. A kernel function is a similarity
measure in a space resulted by a feature mapping u : X ! F from
the input space X to a feature space F (where F is a Hilbert space).
For the set fx1;x2; :::; xng of data points, the kernel matrix is defined
as K ¼ fkðxi;xjÞg16i; j6n where K is a symmetric positive semi-defi-
nite matrix. Indeed, every positive definite and symmetric matrix
is a kernel matrix, that is, an inner product matrix in some embed-
ding space and conversely, every kernel matrix is symmetric and
positive definite [52].

2.2. Related works

Until now many kernel learning methods have been introduced.
Most of them either construct a kernel based on learning small
number of coefficients or learn a whole kernel matrix. Some
studies [18,31,32] are based on learning only parameters of a para-
metric kernel like Gaussian kernel function. Some others
[3,4,7,9,34–37,53,54] assume kernel matrices to be a linear combi-
nation of base matrices constructed beforehand (usually from
eigenvectors of a fixed matrix like the graph Laplacian). The most
flexible methods [5,23–28] learn an n � n matrix. However, these
methods are usually very computationally expensive and also need
large amount of supervisory information to find the large number
of free parameters. Thus, the existing methods usually either learn
at most n parameters (where n shows the number of data) or learn
an n � n matrix that causes low efficiency and overfitting prob-
lems. Few recent methods [29,30] have tried to learn low rank ker-
nel matrices or learn a smaller matrix [38]. However, their
optimization problems are not completely suitable for the con-
strained clustering problem.

Although many kernel (or metric) learning methods have been
introduced for semi-supervised clustering, the relation between
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