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We propose a fast shape decomposition method for granular microstructures using a 3-D approach based
on medial axis. We define a two-step algorithm: the first step relies on a notion of digital flow to obtain a
preliminary over-decomposition from medial balls. During a second step, we use geometric criteria to
obtain a relevant and precise volumetric decomposition. We apply our algorithm to 3-D objects of mate-
rials and, more precisely, to microtomographic images of snow microstructures.
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1. Introduction

Shape decomposition is one of the fundamental techniques in
computer graphics and is widely used in shape processing. The
goal of decomposition, sometimes called segmentation, is to sim-
plify and/or change the representation of an object in order to
make it more meaningful and easy to analyze [33]. The principal
contribution of this paper focuses on a fast and efficient shape
decomposition method which is based on the digital flow. The con-
cept of flow was introduced in [12]. With the proposition of a fast
computation of critical points in digital domain, we obtain a frame-
work of method which is optimal in time. Moreover, we provide
two distinct geometrical criteria to control the quality of the
decomposition.

In this paper, we first propose a digital version of the flow notion
from computational geometry to yield a fast initial decomposition
of 3-D granular materials into regions (Section 4). This approach
provides a structure on the initial regions which allows us to define
a simple filtering algorithm to correct over-decomposition effects
(Section 5). We validate the quality of the decomposition on both
synthetic data and images of granular snow samples (Section 6).
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2. Related works

The main context of this paper is the analysis of granular mate-
rials from 3-D computed tomographic images. More precisely, we
focus on a specific granular material, i.e. deposited snow on the
ground (see Fig. 9), which is observed at the scale of its microstruc-
ture (1 voxel ~ 5-20 pum). In this context, micro-scale modelling
requires a precise 3-D description of snow microstructures in
terms of individual grains and bond’s characteristics [6]. Practi-
cally, there are various shape types of snow present in the snow-
pack, like Precipitation Particles (PP), Rounded Grains (RG), Melt
Forms (MF) and so on [15]. Each class implies different geometry
of grains from nearly spherical objects to facetted ones. So the chal-
lenge is to decompose the 3-D images of these different snow types
into grains, which are usually sintered together and form complex
shapes. Another specific aspect of our context is that physical anal-
ysis of snow microstructures leads to further requirements on the
grain-to-grain interfaces: the interface between two grains should
be flat or with minimal curvature values. We do not use such an
information directly in our segmentation approach but we rely
on it in our experimental evaluation.

From image processing, several approaches for shape decompo-
sition problems consider mathematical morphology tools such as
watershed transform [13] or region growing operators [32]. In
our context where the input object is a binary volume, the main
idea of these approaches is to start from a set of markers defined
by local maxima in the distance transform of the input shape
(see [34,22] for a survey). Then, a propagation process is used to
enlarge catchment basins of each local minimum to define the
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overall decomposition into non-overlapping regions. Despite
several improvements [14], the main drawback is that such
approaches have difficulties to capture the complex shape geome-
try of snow grains and bonds.

Surface based techniques can also be considered. The main idea
is to perform a first decomposition on the 3-D object boundary and
to propagate such decomposition to the object’s interior to finally
obtain the volumetric decomposition. If we suppose that grains
are smooth with rounded shapes, differential estimators (mean
and Gaussian curvatures) can be used to decompose the surface into
components with almost constant curvature values [37]. In a previ-
ous work [36], we have developed such decomposition tools based
on surface curvature information. This method identifies groove
regions on the surface of object to locate the possible separating
boundaries in volume. However, all these techniques are highly sen-
sitive to the initial surface decomposition into groove regions from
curvature map. Furthermore, they require stable and robust to noise
differential curvature estimators, which could be challenging.

Another approach consists in decomposing the initial shape
using volumetric information based on the distance map [35] or
the medial axis representation of a shape [12]. For the first men-
tioned approach, the idea is close to the watershed approach: we
start from local maxima of the distance map and we perform a
propagation process to construct the regions. A last step is required
to overcome the over-decomposition induced by the first step and
uses a heuristic based merging process between adjacent regions.
Similarly to watershed, the method is highly sensitive to the initial
local maxima computation and the region interface quality is poor.
From computational geometry, Dey et al. [12] proposed an inter-
esting mathematical tool which constructs a continuous flow from
the medial axis representation of a shape. In this approach, the
object is represented by point sets on its boundary and the medial
axis is defined as a subset of the Voronoi diagram of the input point
set [3]. Another method which is based on curve skeletons was
proposed by Reniers and Telea [27,28]. The curve-skeleton junc-
tions which signal the interpenetration of parts are detected based
on the junction rule using a function based geodesic metric to
quantify the relevance of a given curve-skeleton branch. These
approaches provide very good results on 3-D models and CAD
shapes. However, when applying them to large microtomographic
images of snow microstructures (high resolution objects, high
topology genus, noisy curve-skeleton with small shortest loops
associated to surface), these approaches become time consuming
and may lead to inconsistent decomposition.

We propose here a purely volumetric approach which does not
require to back-project volumetric information (curve-skeleton or
medial structures) to the object surface to compute geometrical
information. Our proposal is thus based on simple digital volumet-
ric data structures (digital power map and digital flow), which can
be obtained by very fast algorithms.

3. Preliminaries

In this section, we outline the notion of Flow induced by a shape
[12]. The original Flow definition is described here in a more gen-
eral setting by considering general shapes which are embedded
in d-dimensional Euclidean space R".

3.1. Flow in continuous space

In the following, X denotes a compact subset of d-dimensional
Euclidean space R?,9.x denotes its boundary. The definitions can
be found in [12]. Given X c RY, the distance transform h: R — R
is defined at each point x € R? such that

y - (1)

h(x) = inf

Definition 1 (Anchor set). For all x € R%, the anchor set A(x) of x is
given by

A(x) = argmin, . [ly — x| (2)

In other words, A(x) is the set of the closest points to x in 9X. Let
conv(A(x)) be the convex hull of A(x). In Fig. 1, we illustrate, in
dimension 2, several configurations where conv(A(x)) is a triangle
or an edge.

Definition 2 (Critical and Regular points). A point x € R? is a critical
point if x € conv(A(x)). Otherwise, x is regular.

The flow is defined by using the direction of steepest ascent. First,
we set d(x) as driver of x, where d(x) = argmin,c.n,apw)
ly—x|*V x € R%. We then define a vector v: R — RY, v(x) =
g if x # d(x) and 0 otherwise.

Definition 3 (Induced Flow). The flow is a function
¢ : [0,00) x RY — RY, the right derivative of which satisfies, at each
point x € R¢

llm(/)(tvx) — (ﬁ(fo,X) _
tlto t—to

v(¢(to, X)) 3)

Definition 4 (Stable manifold). The stable manifold S(x) of a criti-
cal point x is the set of all the points which flow into x.

S(x) = {y € R : limg(t.y) = x} (4)

The stable manifolds of all critical points induce a decomposi-
tion of the object into disjoint regions (the word stable thus
refers to locii where the flow gradient is null). It means,
RY = J,S(x) for all critical points x. Furthermore, the decomposi-
tion is valid since for any two critical points x and y (x # y), we
have S(x) N S(y) = 0.

3.2. Medial axis and digital medial axis

The Medial axis of a shape is a classic method for shape analysis.
It was first proposed by Blum [4] in the continuous plane and can
be defined as the set of balls contained in & touching at least twice
0X. Following previous definitions, a ball with center x € X and
radius r belongs to the medial axis if and only if |A(x)| > 2 and
ly — x|| = r for any point y € A(x).

conv(A(x)) conv(A(y))

(a) (b)

conv(A(2))

Fig. 1. Several configurations to illustrate the definition of critical points: In (a), x is
such that x € conv(A(x)) (triangle in red) and is thus a critical point. In (b), y lies in
the segment conv(A(y)), y is a critical point too. In (c), 2 conv(A(2)), so z is a regular
point. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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