
Fast computation of Bipartite graph matching q

Francesc Serratosa ⇑
Universitat Rovira i Virgili Tarragona, Catalonia, Spain

a r t i c l e i n f o

Article history:
Received 13 December 2013
Available online 1 May 2014

Keywords:
Graph Edit Distance
Bipartite graph matching
Munkres algorithm

a b s t r a c t

We present a new algorithm to compute the Graph Edit Distance in a sub-optimal way. We demonstrate
that the distance value is exactly the same than the one obtained by the algorithm called Bipartite but
with a reduced run time. The only restriction we impose is that the edit costs have to be defined such
that the Graph Edit Distance can be really defined as a distance function, that is, the cost of insertion plus
deletion of nodes (or arcs) have to be lower or equal than the cost of substitution of nodes (or arcs).
Empirical validation shows that higher is the order of the graphs, higher is the obtained Speed up.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Attributed Graphs have been of crucial importance in pattern
recognition throughout more than 3 decades [1]. Graphs have been
used to model several kinds of problems in some pattern recogni-
tion fields such as object recognition [2,3], scene view alignment
[4–7], multiple object alignment [8,9], object characterization
[10,11], among a great amount of other applications. Interesting
reviews of techniques and applications are [12–14]. If elements
in pattern recognition are modelled through attributed graphs,
error-tolerant graph-matching algorithms are needed that aim to
compute a matching between nodes of two attributed graphs that
minimizes some kind of objective function. Unfortunately, the time
and space complexity to compute the minimum of these objective
functions is very high. For this reason, a lot of research has been
done on trying to reduce as much as possible the run time of the
graph-matching algorithms through sub-optimal techniques. Since
its presentation, Bipartite algorithm [15] has been considered one
of the best graph-matching algorithms due to it obtains a sub-opti-
mal distance value almost near to the optimal one but with a
considerable decrease on the run time.

This paper presents a variant of the Bipartite algorithm [15] that
obtains exactly the same distance value but with a reduced
run time. Experimental validation shows a Speed up of 5 on
well-known databases and higher Speed up on synthetically gener-
ated graphs. In fact, higher is the order of the graphs, higher is also
the Speed up of our algorithm. This property is interesting since in

the next years, we will see a need on representing the objects
(social nets, scenes, proteins. . .) on larger structures.

The outline of the paper is as follows, in the next section, we
define the attributed graphs and the graph-edit distance. On Sec-
tion 3, we explain how to compute the Graph Edit Distance and
we concretize on the Bipartite algorithm. Finally, on Section 4,
we present our new method and we schematically show our algo-
rithm. On Section 5, we show the experimental validation and we
finish the article with some conclusions.

2. Attributed graphs and Graph Edit Distance

In this section, we first define the Attributed Graphs, Cliques
and Graph matching and then we explain the Graph Edit Distance.

2.1. Definitions

Attributed Graph and Cliques: Let Dv and De denote the
domains of possible values for attributed vertices and arcs, respec-
tively. An attributed graph (over Dv and De) is defined by a tuple
G ¼ ðRm ;Re; cv ; ceÞ, where Rv ¼ fvaja ¼ 1; . . . ;ng is the set of verti-
ces (or nodes), Re ¼ feabja;b 2 1; . . . ;ng is the set of arcs (or edges),
cv : Rv ! Dv assigns attribute values to vertices and ce : Re ! De

assigns attribute values to arcs. The order of graph G is n.
We define a clique Ka on an attributed graph G as a local struc-

ture composed of a node and its outgoing edges Ka ¼ ðva; feabjb
2 1; . . . ;ng; cv ; ceÞ.

Error correcting graph isomorphism between graphs: Let
Gp ¼ ðRp

v ;R
p
e ; c

p
v ; cp

eÞ and Gq ¼ ðRq
v ;R

q
e ; c

q
v ; cq

eÞ be two attributed
graphs of initial order n and m. To allow maximum flexibility in
the matching process, graphs are extended with null nodes [16]
to be of order nþm. We will refer to null nodes of Gp and Gq by
R̂p

v # Rp
v and R̂q

v # Rq
v , respectively. We assume null nodes have

http://dx.doi.org/10.1016/j.patrec.2014.04.015
0167-8655/� 2014 Elsevier B.V. All rights reserved.

q This paper has been recommended for acceptance by R. Davies.
⇑ Tel.: +34 558507; fax: +34 977559710.

E-mail address: francesc.serratosa@urv.cat

Pattern Recognition Letters 45 (2014) 244–250

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec

http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.04.015&domain=pdf
http://dx.doi.org/10.1016/j.patrec.2014.04.015
mailto:francesc.serratosa@urv.cat
http://dx.doi.org/10.1016/j.patrec.2014.04.015
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


indices a 2 ½nþ 1; . . . ;nþmg and i 2 ½mþ 1; . . . ;nþmg for graphs
Gp and Gq, respectively. Let T be a set of all possible bijections
between two vertex sets Rp

v and Rq
v . Bijection fp;q

: Rp
v ! Rq

v, assigns
one vertex of Gp to only one vertex of Gq. The bijection between
arcs, denoted by fp;q

e , is defined accordingly to the bijection of their
terminal nodes. In other words:

f p;q
e ðep

abÞ ¼ eq
ij ) f p;qðvp

aÞ ¼ vq
i ^ f p;qðvp

bÞ ¼ vq
j

vp
a; vp

b 2 Rp
v � R̂p

v and vq
i ;v

q
j 2 Rq

v � R̂q
v

ð1Þ

We define the non-existent or null edges by R̂p
e # Rp

e and
R̂q

e # Rq
e .

2.2. Graph Edit Distance between two graphs

Graph Edit Distance [17–19] is the most used method to solve
the error-tolerant graph matching. It is based on defining a distance
between attributed graphs through the minimum modifications
that are required to transform one attributed graph into the other.
To do so, it is needed to define these modifications, which are called
edit operations. Basically, six different edit operations have been
defined: insertion, deletion and substitution of both nodes and
edges. In this way, for every pair of attributed graphs (Gp and Gq),
there is an edit path editPathðGp;GqÞ ¼ ðe1; . . . ; ekÞ (where each ei

denotes an edit operation) that transforms one graph into the other.
Given two graphs, there is a set of edit paths, which we name #, that
each of them transforms one of the graphs into the other. Fig. 1
shows the edit path that transforms Gp into Gq. It is composed of
the following 5 edit operations: Delete edge, Delete node, Insert
node, Insert edge and Substitute Node. The substitution operation
is needed since the attributes of both nodes are different.

Edit cost functions have been introduced to quantitatively eval-
uate which edit path is the best. The aim of these functions is to
assign a penalty cost to each edit operation according to the amount
of modification that it introduces in the transformation sequence.

Given two attributed graphs to be compared, we can define a
graph bijection f p;q 2 T between them and also we can relate this
bijection with the edit path, editPathðGp;GqÞ 2 #. To do so, we can
assume the edit operation called Substitution simply represents
node-to-node assignations. Moreover, the edit operations Deletion
and Insertion are transformed to mappings of non-null nodes of
the first or second graph to null nodes of the second or first graph.
Using this transformation, given two graphs, Gp and Gq; and a
bijection between their nodes, f p;q, the graph edit cost is given by
(Definition 7 of [20]):

where the edit costs are: Cvs: Cost of substituting node vp
a of Gp for

node f p;qðvp
aÞ of Gq. Cvd: Cost of deleting node vp

a of Gp. Cvi: Cost of
inserting node vq

i of Gq. And for edges, Ces: Cost of substituting edge
ep

ab of graph Gp for edge f p;q
e ðep

abÞ of Gq. Ced: Cost of assigning edge ep
ab

of Gp to a non-existing edge of Gq. Cei: Cost of assigning edge eq
ab of

Gq to a non-existing edge of Gp. The cost of mapping two null nodes
or two null arcs is always defined to be zero. For this reason, we
have not considered this case in the equation. Fig. 2 shows the
obtained labelling given the edit path presented in Fig. 1. The cost
of this labelling is: EditCostðGp;Gq; f p;qÞ ¼ Ced þ Cvd þ Cvi þ Cei þ Cvs.

Finally, the Graph Edit Distance is defined as the minimum cost
under any bijection in T:

EditDistanceðGp;GqÞ ¼minf p;q2T EditCostðGp;Gq; f p;qÞ ð3Þ

Using this definition, the Graph Edit Distance directly depends
on parameters or functions Cvs, Cvd, Cvi, Ces, Ced and Cei. Several def-
initions of these functions exist, if we focus first on the definition of
functions Cvs and Ces, the most common approaches are the follow-
ing. The first and simplest approach considers Cvsðvp

a;vq
i Þ ¼ Kvs if

distðcp
v ðvp

aÞ; cq
vðvq

i ÞÞ > Threshold otherwise Cvs ¼ 0, distð�Þ is defined
as a distance function over the domain of the attributes. Specific
examples of this cost can be found in fingerprint verification [21]
where Cvs 2 f0;1g or in [20,22]. The second and most frequently
used approach corresponds to the case where Cvsðvp

a;vq
b; hv Þ 2 R.

In this case, node substitution cost depends on the attributes of
the nodes and possibly on some other parameters hv as shown in
[23,24,4], among others. Similar approaches can be used to define
Ces. With regard to Cvd;Cvi;Ced and Cei, these functions usually

simply assign a constant cost. However, they can also depend on
node or edge attributes [16,25,26].

We say the optimal bijection, f p;q�, is the one that obtains the
minimum cost,

f p;q� ¼ argminf p;q2T EditCostðGp;Gq; f p;qÞ ð4Þ

We define the distance and the optimal bijection between two
cliques in a similar way as the distance between two graphs since
they are local structures of graphs. We name the cost of substitut-
ing clique Kp

a by Kq
i as Ca;i. The cost of deleting clique Kp

a as Ca;e and
the cost of inserting clique Kq

i as Ce;i.

Fig. 1. One of the edit paths that transforms Gp into Gq .

Fig. 2. Labelling f p;q between Gp and Gq given the edit path of Fig. 2.

EditCostðGp ;Gq; f p;qÞ¼
X

vp
a 2Rp

v � R̂p
v

vq
i 2Rq

v � R̂q
v

Cvsðvp
a ;v

q
i Þþ

X

vp
a 2Rp

v � R̂p
v

vq
i 2 R̂q

v

Cvdðvp
a ;v

q
i Þþ

X

vp
a 2 R̂p

v

vq
i 2Rq

v � R̂q
v

Cviðvp
a ;v

q
i Þþ

X

ep
ab 2Rp

e � R̂p
e

eq
ij 2Rq

e � R̂q
e

Cesðep
ab;e

q
ijÞþ

X

ep
ab 2Rp

e � R̂p
e

eq
ij 2 R̂q

e

Cedðep
ab;e

q
ijÞþ

X

ep
ab 2 R̂p

e

eq
ij 2Rq

e � R̂q
e

Ceiðep
ab;e

q
ijÞ

f p;qðvp
aÞ¼vq

i and f p;q
e ðep

aiÞ¼ eq
ij

ð2Þ

F. Serratosa / Pattern Recognition Letters 45 (2014) 244–250 245



Download English Version:

https://daneshyari.com/en/article/534313

Download Persian Version:

https://daneshyari.com/article/534313

Daneshyari.com

https://daneshyari.com/en/article/534313
https://daneshyari.com/article/534313
https://daneshyari.com

