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a b s t r a c t

Among a set of observed relevant DNA sequences coming from a set of co-regulated genes, there exist
some short, functional yet hidden sub-sequence patterns which recurrently appear across genomic
sequences. The task of sequence pattern discovery, also known as motif discovery, is to uncover these
unseen subsequences ab initio and then build a motif model for them. A plethora of motif algorithms
has been designed to tackle this problem. This paper aims to compare a set of optimization techniques
by consolidating them under the same maximum-likelihood (ML) framework. The framework unifies a
suite of motif-finding algorithms by maximizing the same function, that enables a systematic comparison
of different optimization schemes as well as provision of practical guidance on using these techniques. As
a foundation, the ML framework is built for two categories of iterative optimization techniques (i.e. deter-
ministic and stochastic) capable of exploring the sequence alignment space. The deterministic algorithms
are to maximize the likelihood function by performing iteratively greedy local search. The stochastic
algorithms are to iteratively draw motif location samples using Monte Carlo simulation and simulta-
neously keep track of solutions with local maximum-likelihoods. A total of five ML-based sequence pat-
tern-finding algorithms are developed, evaluated and compared using simulated and real biological
sequences. Results show that deterministic algorithms are more time-efficient than its stochastic coun-
terparts, but their performance is not as good as the stochastic algorithms.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Deoxyribonucleic acid or DNA for short is a large biological mol-
ecule on which the genetic information is encoded, and it estab-
lishes the characteristics of living cells within an organism. DNA
can be defined by a linear sequence of simply repeating units
(i.e. nucleotides) consisting of three components: a sugar, phos-
phate, and one of four heterocyclic bases, that is, Adenine (A), Cyto-
sine (C), Guanine (G) and Thymine (T). For example, ATGTTTTCAA
is a 10-nucleotide DNA sequence (a single strand). DNA molecule
indeed exists as double strands of two nucleotide chains. Two
chains are held together by the A–T and C–G base-pairings (i.e.
complementarity rule) that are connected by hydrogen bonds.
For example, the human genome consists of about 3 billions of
these nucleotides. A specific spelling word or subsequence on the
genome codes a gene that can be transcribed into messenger ribo-
nucleic acid (mRNA), and then mRNA is translated into a protein
molecule. The principle of biological information flow from a piece
of genomic DNA (a gene) to mRNA to a protein is called central

dogma of molecular biology (Alberts et al., 2002). Notice that not
every gene produces mRNA and then codes a protein, instead some
genes may produce ribosomal RNA or other small non-coding RNAs
or microRNAs. Quite recently, microRNAs (miRNAs) have emerged
as a major class of regulatory genes, present in most metazoans
and important for a diverse range of biological functions, see a re-
cent review for more details (Rajewsky, 2006). At every moment, a
cell has to determine where, when and how much of each gene is
to be expressed. To accommodate this need, a genomic DNA con-
tains cis-regulatory sequences or cis-elements in promoter regions
to which regulator proteins, so called transcription factors (TF), can
bind, see the illustration in Fig. 1. These proteins either activate or
suppress the assembly of the transcription machinery and thereby
regulate the expression of genes (Alberts et al., 2002). Different cis-
elements associated with different TFs can be logically combined
by arranging their binding sites (i.e. a cis-regulatory module) on
the DNA such that the TFs bind cooperatively or exclude each
other. Although a functional gene product may be a miRNA or a
protein, the majority of known mechanisms regulate protein
coding genes. Any step of the gene’s expression may be modulated,
from DNA–RNA transcription to the post-translational modifica-
tion of a protein. Gene regulation gives the cell control over its
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structure and function, and it is the basis for an organism to grow
and survive.

Gene expression is under strict modulation, that is, it deter-
mines how much (expression amount), when (timing) and which
tissue (cell differentiation) it will express. Although gene regula-
tion is critically important to understand biological and patholog-
ical processes, the detailed mechanism is still not very clear.
Therefore, one of the greatest challenges facing molecular biology
is the understanding of the complex mechanisms regulating gene
expression (Michelson, 2002; Harbison et al., 2004; ENCODE,
2007). Fig. 1 illustrates a simplified gene regulation. A genomic se-
quence can be roughly divided into coding regions (genes) and pro-
moter/regulatory regions (often upstream of genes). To trigger a
gene expression, one or more transcription factors (TFs) first bind
to their cognate DNA segments in the promoter region and form
the DNA-TF complex, and then this interaction will influence the
transcriptional machinery and the gene starts expression. Obvi-
ously, identification of cis-regulatory sequences (i.e. cis-element)
is the first step toward unraveling the complex gene expression,
which is composed of multiple interacting gene regulation, a ge-
netic network. The current understanding is that much of the spec-
ificity of gene expression can depend on how proteins bind to cis-
regulatory DNA sequences and facilitate or repress the assembly of
the transcriptional machinery at the promoter (Fig. 1). Historically,
cis-regulatory elements have been determined through labor-
intensive molecular biology reporter assays and DNaseI footprint-
ing, whereas the potential binding sites of known transcription
factors have been determined through in vitro DNA selection assay
experiments and gel shift assays (Ji and Wong, 2006; MacIsaac and
Fraenkel, 2006). Recently, genome-wide assay of in vivo binding
sites is available through the ChIP-chip experiments (ChIP com-
bined with microarray technology) (Ren et al., 2000) or ChIP-seq
(ChIP coupled with massively parallel sequencing) (Johnson et al.,
2007).

Identification of regulatory regions and binding sites is a prere-
quisite for elucidating gene regulation. Experimental identification
of these sites is expensive, time-consuming and labor-intensive
(Stormo and Hartzell, 1989), and therefore developing computa-
tional approaches to the challenging motif problem become essen-
tial to address these issues. A binding motif is often 4–25 base pairs
long and it specifies the binding affinity of DNA–TF interaction. A
motif represents a set of related binding sites that can be recog-
nized by the same TF, see an example in Fig. 2A. These binding sites
are hidden in a extremely long genomic sequence. If these sites
have been experimentally verified, then a model can be built on

these sites, either in a consensus or position weight matrix
(PWM) format, and it is then used to scan a genomic sequence
and predict more potential binding sites. This is known as motif
scanning method. However, more challenging motif discovery re-
quires an algorithm that can find binding sites de novo. In other
words, given a set of unaligned sequences that potentially contain
related motifs, a de novo motif discovery algorithm is designed to
locate these related or statistically over-represented binding sites
and build a model for them. Despite numerous algorithmic endeav-
ors in an attempt to tackle the motif-finding problem, it still re-
mains extremely challenging, because these biological motifs are
short, degenerate and hard to enumerate (MacIsaac and Fraenkel,
2006; Tompa et al., 2005).

There are two categories of algorithms developed to efficiently
tackle the de novo motif discovery problem: (1) the word enumer-
ative method, and (2) the PWM updating method including Expec-
tation Maximation (EM) (Lawrence and Reilly, 1990; Bailey and
Elkan, 1994) and Gibbs sampling (Geman and Geman, 1984; Law-
rence et al., 1993; Liu, 1994). In addition, a greedy algorithm called
CONSENSUS was early developed (Stormo and Hartzell, 1989). The
word enumerative method has been well developed to grapple
with the motif problem. It enumerates all possible spelling words
in a set of related DNA sequences and creates a frequency table
for all words detected. Potential motifs are those words that would
not possibly occur by chance. A suffix tree is often used to acceler-
ate word search (Pavesi et al., 2001). In the word enumerative ap-
proach, the exhaustive search strategy seems impractical for long
motif and large alphabet size, because the number of all possible
words grow exponentially with word length and the alphabet size.
Some practical enumeration algorithms often use tradeoffs on the
alphabet size and the number of letter mutations allowed, see re-
cent reviews and references therein (Ji and Wong, 2006).

The PWM updating method has been widely adopted and effi-
ciently implemented to solve the de novo DNA motif-finding prob-
lem. This method often initializes a PWM motif model by randomly
aligning the sequences, and then iteratively refines the model until
a convergence. The EM and Gibbs sampling are two major comput-
ing techniques used in the PWM updating method. The EM motif
algorithms are commonly built on the maximum-likelihood mod-
els (Lawrence and Reilly, 1990; Bailey and Elkan, 1994; Bailey
and Elkan, 1995), whereas Gibbs motif samplers are rooted on
Bayesian computation (Liu et al., 1995; Liu, 2002; Liu, 2002; Jensen
et al., 2004). It is thus hard to compare these algorithms and give
direct technique guide. Although EM and Gibbs methods can be
laid on a common statistical foundation to facilitate their compar-
ison, they were less explicitly investigated in motif discovery prob-
lem. This paper builds such foundation on the maximum likelihood
framework, which unifies the existing motif-finding algorithms
and facilitates a systematic comparison as well as provides practi-
cal guidance on using these techniques.

This paper aims to compare a set of motif discovery algorithms
by consolidating them under the maximum-likelihood (ML) frame-
work. Several motif discovery algorithms based on the common
statistical foundation are then developed to maximize the log-like-
lihood function by imputing the unobserved data. This would en-
able the evaluation and comparison of different algorithms and
their performance under the same objective function. For cis-regu-
latory decoding or motif discovery problem, the binding sites or
motif locations are such unobserved or missing data. Two different
optimization schemes are investigated to explore the missing data
space. The first is the deterministic algorithms including EM and
other greedy heuristic methods that are to optimize a specified
objective function by performing iteratively optimal local search
in the alignment space. The second is the stochastic algorithms
such as Gibbs sampling (Geman and Geman, 1984; Lawrence
et al., 1993; Liu et al., 1995; Liu, 2002) and Metropolis–Hastings

Fig. 1. Components of gene regulation. A transcription factor (i.e. TF) binds to a
specific site (transcription-factor binding site (TFBS) or cis-element: ACTGGTC) that
is either proximal or distal to a transcription start site (TSS) located right upstream
of a gene (i.e. promoter region). Sets of TFs can operate in functional cis-regulatory
modules (CRMs) to achieve specific regulatory properties. Interactions between
bound TFs and cofactors stabilize the transcription-initiation machinery to enable
gene expression of which product is a protein. The regulation could be either
positive (activation) or negative (repression). A gene is transcribed to messenger
RNA (mRNA), and then mRNA is translated into a protein.
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