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a b s t r a c t

In this work, we propose a novel technique for obtaining descriptors of gray-level texture images. The
descriptors are provided by applying a multiscale transform to the fractal dimension of the image esti-
mated through the probability (Voss) method. The effectiveness of the descriptors is verified in a classi-
fication task using benchmark over texture datasets. The results obtained demonstrate the efficiency of
the proposed method as a tool for the description and discrimination of texture images.

� 2014 Published by Elsevier B.V.

1. Introduction

Fractals have played an important role in many areas with
applications related to computer vision and pattern recognition
[1–6], owing to their flexibility in representing structures usually
found in nature. In such objects, we observe different levels of de-
tail at different scales, which are described in a straightforward
manner by fractals, rather than through classical Euclidean
geometry.

Most fractal-based techniques are based on the concept of frac-
tal dimension. Although this concept was originally defined only
for mathematical fractal objects, it contains some properties that
make it a very interesting descriptor for any object in the real
world. Indeed, fractal dimension measures how the complexity (le-
vel of detail) of an object varies with scale, an effective and flexible
means of quantifying how much space an object occupies, as well
as important physical and visual properties of the object, such as
luminance and roughness.

Fractal techniques include the use of Multifractals [7–9], Multi-
scale Fractal Dimension [10,11] and fractal descriptors [12–16].
Here we are focused on the last approach, which has demonstrated
the best results in texture classification [17]. The main idea of frac-
tal descriptors theory is to provide descriptors of an object repre-
sented in a digital image from the relation among fractal
dimensions taken at different observation scales, thus these values

provide a valuable information on the complexity of the object, in
the sense that they capture the degree of detail at each scale. In this
way, fractal descriptors are capable of quantifying important phys-
ical characteristics of the structure, as the fractal dimension, but
presenting a richer information than can be provided by a single
number (fractal dimension).

Although fractal descriptors have demonstrated to be a promis-
ing technique, we observe that they are defined mostly on well-
known methods to estimate the fractal dimension. Here, we pro-
pose fractal descriptors based on a less known definition of fractal
dimension: the probability dimension. This is a statistical ap-
proach, which measures the distribution of pixel intensities along
the image. In this way, such descriptors can express how the statis-
tical arrangement of pixels in the image changes with the scale and
how much such correlation approximates a fractal behavior. In this
sense, our descriptor also measure the self-similarity and complex-
ity of the image but upon a statistical viewpoint. This is a rich and
not explored perspective, which is studied in depth in this work.

We use the whole power-law curve of the dimension and apply
a time-scale transform to emphasize the multiscale aspect of the
features. Finally, we test the proposed method over three well-
known datasets, that is, Brodatz, Outex and UIUC, comparing the
results with another fractal descriptor approach showed in [13]
and other conventional texture analysis methods. The results dem-
onstrate that probability descriptors achieve a more precise classi-
fication than other classical techniques.

2. Fractal theory

In recent years, fractal geometry concepts have been applied to
the solution of a wide range of problems [1–6], mainly because
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conventional Euclidean geometry has severe limitations in provid-
ing accurate measures of real-world objects.

2.1. Fractal dimension

The first definition of fractal dimension provided in [18], is the
Hausdorff dimension. In this definition, a fractal object is a set of
points immersed in a topological space. Thus one can use results
from measure theory to define a measure over this object. This is
the Hausdorff measure expressed by

Hs
dðXÞ ¼ inf

X1

i¼1
jUijs : Ui is a d-cover of X; ð1Þ

where jXj denotes the diameter of X, that is, the maximum possible
distance among any elements of X:

jXj ¼ supfjx� yj : x; y 2 Xg: ð2Þ

Here, a countable collection of sets Ui, with jUij 6 d, is a d-cover of X
if X � [1i¼1Ui.

Notice that H also depends on a parameter d, which expresses
the scale at which the measure is taken. We can eliminate such
dependence by applying a limit over d, defining in this way the
s-dimensional Hausdorff measure:

HsðXÞ ¼ imd!0 Hs
dðXÞ: ð3Þ

The plot of HsðXÞ as a function of s shows a similar behavior in any
fractal object analyzed. The value of H is1 for any s < D and it is 0
for any s > D, where D always is a non-negative real value. D is the
Hausdorff fractal dimension of X. More formally,

DðXÞ ¼ fsgj inf s : HsðXÞ ¼ 0
� �

¼ sup HsðXÞ ¼ 1
� �

: ð4Þ

In most practical situations, the Hausdorff dimension is difficult
or even impossible to calculate. Thus assuming that any fractal ob-
ject is intrinsically self-similar, the literature shows a simplified
version, also known as the similarity dimension or capacity
dimension:

D ¼ � logðNÞ
logðrÞ ; ð5Þ

where N is the number of rules with linear length r used to cover
the object.

In practice, the above expression may be generalized by consid-
ering N to be any kind of self-similarity measure and r to be any
scale parameter. This generalization has given rise many methods
for estimating fractal dimension, with widespread applications to
the analysis of objects that are not real fractals (mathematically
defined) but that present some degree of self-similarity in specific
intervals. An example of such a method is the probability dimen-
sion, used in this work and described in the following section.

2.2. Probability dimension

The probability dimension, also known as the information
dimension, is derived from the information function. This function
is defined for any situation in which we have an object occupying a
physical space. We can divide this space into a grid of squares with
side-length d and compute the probability pm of m points of the ob-
ject pertaining to some square of the grid. The probability function
is given by

NPðdÞ ¼
XN

m¼1

1
m

pmðdÞ; ð6Þ

where N is the maximum possible number of points of the object in-
side a unique square. Here we use a generalization of the above
expression defined in the multifractal theory [19]:

NPðdÞ ¼
XN

m¼1

mapmðdÞ; ð7Þ

where a is any real number.
The dimension itself is given as

D ¼ �lim
d!0

ln NP

ln d
: ð8Þ

When this dimension is estimated over a gray-level digital im-
age I : ½M;N� ! R, a common approach is to map it onto a three-
dimensional surface S as

S ¼ fi; j; Iði; jÞjði; jÞ 2 ½1 : M� � ½1 : N�g: ð9Þ

In this case, we construct a three-dimensional grid of 3D cubes also
with side-length d. The probability pm is therefore given by the
number of grid cubes containing m points on the surface divided
by the maximum number of points inside a grid cube (see Fig. 1).

3. Fractal descriptors

Fractal descriptors are values extracted from the log–log rela-
tionship common to most methods of estimating fractal dimen-
sion. Actually, any fractal dimension method derived from the
concept of the Hausdorff dimension obeys a power-law relation,
which may be expressed as

D ¼ � logðMÞ
logð�Þ ; ð10Þ

where M is a measure depending on the fractal dimension method
and � is the scale at which this measure is taken.

Therefore Fractal descriptors are provided from the function u:

u : logð�Þ ! logðMÞ: ð11Þ

We call the independent variable t to simplify the notation. Thus
t ¼ log � and our fractal descriptor function is denoted uðtÞ. For
the probability dimension used in this work, we have

uðtÞ ¼ � logðNV ðdÞÞ
logðdÞ : ð12Þ

The values of uðtÞ may be directly used as descriptors of the
analyzed image or may be post-processed by some kind of opera-
tion aimed at emphasizing some specifical aspects of that function.
Here, we apply a multiscale transform to uðtÞ and obtain a bi-
dimensional function Uðb; aÞ, in which the variable b is related to
t and a is related to the scale at which the function is observed.
A common means of obtaining U is through a wavelet transform:

Uðb; aÞ ¼ 1
a

Z
R

w
t � b

a

� �
uðtÞdt; ð13Þ

where w is a wavelet basis function and a is the scale parameter
[20]. Fig. 2 shows an example where two textures with the same
dimension, but visually distinct, provide different descriptors.

4. Proposed method

This work proposes to obtain fractal descriptors from textures
by using the probability fractal dimension. At first, the values on
the curve uðtÞ : logðNPðdÞÞ in Eq. (7) are computed for each image.
Therefore we apply a multiscale transform to u.

The multiscale process employs a wavelet transform of uðtÞ, as
described in the previous section:

Uðb; aÞ ¼ 1
a

Z
R

w
t � b

a

� �
uðtÞdt: ð14Þ
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