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a b s t r a c t

Methods for extracting quantitative information regarding nuclear morphology from histopathology
images have been long used to aid pathologists in determining the degree of differentiation in numerous
malignancies. Most methods currently in use, however, employ the naïve Bayes approach to classify a set
of nuclear measurements extracted from one patient. Hence, the statistical dependency between the
samples (nuclear measurements) is often not directly taken into account. Here we describe a method that
makes use of statistical dependency between samples in thyroid tissue to improve patient classification
accuracies with respect to standard naïve Bayes approaches. We report results in two sample diagnostic
challenges.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Given the prominent role of nuclear structure changes in cancer
cells [1–3], numerous researchers have made use of quantitative
nuclear structure measurements to describe automated methods
for classifying different lesions. Automated systems aimed at detec-
tion and diagnosis (grading) of cancerous tissues from histopathol-
ogy images have been described for diagnosing breast cancer [4–8],
thyroid cancer [9–11], prostate cancer [12,13], liver cancer [14] and
colon cancer [15], to name a few. In these methods the following
general strategy is typically used (see Fig. 1). First, images of tissue
specimens, usually obtained via surgical procedures and stained
with a particular stain (e.g. hematoxylin and eosin), are taken using
transmission light microscopy, for example. After appropriate pre-
processing (e.g. color unmixing), the nuclei are segmented and
numerical features describing their morphological characteristics
(e.g. size, perimeter, texture features) are extracted and used to
train a classifier which is capable of determining whether a set of
nuclei extracted from a particular individual can be classified as be-
nign or malignant, or given a differential diagnosis.

One prominent characteristic of many of the methods that use
nuclear morphometry to grade different kinds of cancers is that
classification is performed using the naïve Bayes method whereby
each nuclear structure (represented by a set of numerical features)
is often classified independently from one another [16,17,11]. The
set of nuclei extracted from a patient is then usually classified by
using the majority voting (MV), or taking the most common class
assignment, or perhaps by using different moments (e.g. mean,
variance) of the distribution of nuclei. Thus any statistical depen-
dency, such as correlation for example, between nearby structures
is discarded. Several attempts to capture the spatial information
between nearby cells from microscopic images have been made
by using the graph theory [18,13]. In these works the x; y position
of each nuclear structure in a field of view is used to generate
a neighborhood graph which, together with average nuclear
features, is used in an attempt to differentiate different classes.
Information regarding the intricate distribution of the numerical
features describing each structure, as well as co-dependencies
between these in nearby nuclei, however, are often not used
explicitly.

Our goal in this methodological note is to demonstrate that any
amount of statistical dependency between the morphological char-
acteristics of nearby nuclei can be utilized to improve the classifica-
tion accuracy of methods usually employed for cancer diagnosis and
differentiation. It is well known that cells in living tissues utilize sev-
eral mechanisms (e.g. autocrine or paracrine) to ‘communicate’ with
one another. Given that well established cell communication
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mechanisms exist, it could then be possible that the morphological
information of a given nucleus could depend (statistically speaking)
on the morphology of nearby nuclei. Here we present evidence that
indeed numerical features of nuclei are more correlated to features
extracted from nearby nuclei rather than those of distant nuclei, and
that this difference is statistically significant. We then describe a
method that utilizes any dependency present to augment the accu-
racy of classification (e.g. benign vs. malignant) in comparison with
the naïve Bayes strategy (e.g. majority voting).

We note that the idea of classifying sets of samples (nuclei),
rather than individual samples, is not new and has been studied in
pattern recognition domains recently. In multiple instance learning
(MIL) algorithms, for example, [19,20], the learner receives a set of
bags (each containing more than one sample) that are labeled posi-
tive or negative. Here each bag is labeled, and not each sample. In
MIL algorithms, however, a bag is labeled negative if all the in-
stances in it are negative, but a bag is labeled positive if there is at
least one instance in it which is positive. Other than MIL algorithms,
[21], for example, investigated different instance learning methods,
focusing on the classifier model construction. Under the same con-
text, [17] proposed a K-nearest neighbor method for group-based
classification by combining a MV scheme and a pooling scheme.
They indicate that knowing a set of test samples that belong to the
same, but unknown, class can be used to effectively reduce the indi-
vidual Bayes error rate. Similar approaches that combine individual
classification methods with the MV strategy were also investigated
in the high-throughput applications [22,23] and revealed an im-
proved classification performance compared to those not using
MV strategy. In a similar manner, the method we describe below
makes use of the spatial x; y position of nuclei in a field of view to ex-
ploit their dependency for augmented classification accuracies. We
demonstrate the performance of our approach by classifying three
types of thyroid lesions from 78 patients.

The remainder of this paper is structured as follows. In Section 2,
we describe the mathematical model for the set classification prob-
lem, and show the relationship between the MV strategy and the like-
lihood ratio test (LRT) strategy. We then describe a method that is able
to utilize ‘sets of nuclei’ extracted from image neighborhoods instead
of individual nuclei. We note the new method does not require a spe-
cific ordering within each sub-group. Section 3 describes the compu-
tational procedures we utilized to demonstrate the application of our
approach. Section 4 presents experimental results comparing the sev-
eral computational strategies involved. Finally, summary and conclu-
sions are offered in the last section of this document.

2. Bayesian framework

Let xi
j be a d-dimensional numerical feature vector describing

the jth nucleus of the ith patient, and let Xi ¼ fxi
1; x

i
2; . . . ; xi

ni
g de-

scribe the set of feature vectors pertaining to all nuclei belonging
to the ith patient. Given a set of nuclear measurements Xi, the
objective in pathology problems is to determine the class label
y 2 fy1; y2; . . . ; ykg (for a problem with k gradings or classes) for this
set of measurements. The maximum a posterior (MAP) criterion can
be used to estimate the label of the set Xi via:

yXi
¼ arg max

y
pðyjXiÞ ¼ arg max

y

pðXijyÞpðyÞ
pðXiÞ

¼ arg max
y
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ni
Þ
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For a two-class problem, the label could be simply determined
by comparing the posterior probabilities, given by

pðy ¼ y1jXiÞ
pðy ¼ y2jXiÞ

¼ pðXijy ¼ y1Þpðy1Þ
pðXijy ¼ y2Þpðy2Þ

ð2Þ

and testing whether this ratio is smaller or greater than one. By
assuming the prior probability of each class is equal, i.e.
pðy1Þ ¼ pðy2Þ (when no a priori information regarding incidence is
available), the likelihood ration test (LRT) [24] can be further sim-
plified as

L ¼ log
pðXijy ¼ y1Þ
pðXijy ¼ y2Þ

� �
¼ log pðXijy ¼ y1Þð Þ � log pðXijy ¼ y2Þð Þ ð3Þ

yXi
¼

y1; L > 0
y2; L < 0:

�
ð4Þ

Computing the joint conditional probability pðXijyÞ ¼ pðxi
1; x

i
2; . . . ;

xi
ni
jyÞ is often difficult given the low number of samples in comparison

with the number of dimensions (d� ni) that this would involve.
The naïve Bayes assumption is then often used to overcome this
problem. In this approach, it is assumed that the samples (nuclei)
are independent from one another, i.e. pðxi

1; x
i
2; . . . ; xi

ni
jyÞ ¼Qni

j¼1pðxi
jjyÞ. Under this assumption, the log-likelihood ratio in

Eq. (3) can be computed as

L ¼ log pðXijy ¼ y1Þð Þ � log pðXijy ¼ y2Þð Þ

¼ log
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log p xi
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� �� �
: ð5Þ

Another approach that is often used in these situations is the
MV strategy [25]. The main idea is to classify each sample in the
case individually by using a chosen classifier, label each sample
accordingly, and then assign the label with the majority of votes
as the final label for the case (patient). In order to analyze the con-
nection between MV and LRT, let the output of an individual clas-
sifier be Cðxi

jÞ 2 ½�1;1�, and define an indicator function as

IðpÞ ¼
1; if p P 0
0; if p < 0;

�
ð6Þ

where 1 denotes class y1, and 0 refers to class y2. Then the class la-
bel for the case Xi is determined by calculating the numbers of sam-
ples belonging to each class

yXi
¼

y1; if
Xni

j¼1

IðCðxi
jÞÞP

ni
2

y2; if
Xni

j¼1

IðCðxi
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ni
2 :

8>>>>><
>>>>>:

ð7Þ

Note that if Cðxi
jÞ is defined as the log-ratio of the posterior proba-

bilities, then we could obtain similar functions as in Eqs. (3) and (4),
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yXi
¼

y1; if MV P ni
2

y2; if MV < ni
2 :

(
ð9Þ

Fig. 1. A typical flowchart of histopathology image-based computer-aided
diagnosis.
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