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a b s t r a c t

In this paper, a new parametric active contour called self-affine snake is proposed for medical image segmenta-

tion. It integrates the wavelet transform, parametric active contour (or snake), and self-affine mapping system

to keep their strengths and avoid the weak points. In more detail, it inherits wide capture range from wavelet

transform and topological consistency from snake. Furthermore, it takes advantage of self-affine mapping

system in several aspects including (i) convergence to weak boundaries, especially, next to strong edges, (ii)

reconstruction of boundary openings, and (iii) progress into boundary concavities. The experimental results

were performed using a number of synthetic and medical images given in five sets of experiments. Self-affine

snake provided comparable/superior results in terms of both solution quality and CPU time compared to a

number of frequently-used active contours including balloon, gradient vector flow (GVF), generalized GVF,

and active contour without edges. However, its most important properties were the significant robustness

against noise and reconstruction of boundary openings. Because of the valuable advantages, the proposed

algorithm is an appropriate approach, particularly, for segmentation of medical images which usually suffers

from noise corruption and edge uncertainty.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Segmented medical images are used routinely in a multitude of

different applications such as study of anatomical structure [50], diag-

nosis [2], and localization of pathology [29]. However, medical image

segmentation remains a difficult task due to both tremendous vari-

ability of object shapes and image corruption by noise and artifacts.

Active contours (snakes) have been introduced as a solution [51].

1.1. Explicit and implicit active contours

Generally speaking, active contours are deformable models which

can deform/evolve in the image domain in order to minimize internal

and external energies. The internal energy makes the curve smooth,

while the external energy moves it toward the interesting features in

the image domain. Active contours can be roughly divided into two

categories: parametric (PAC) and geometric/geodesic active contours

(GAC). Each PAC is explicitly represented as a parameterized curve in a

Lagrangian formulation [20] while every GAC is implicitly represented

as a level set of a two-dimensional function [5,30]. GACs can evolve

based on the surface evolution theory and geometric flows, mainly,

in light of the Euler formulation.
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Compared to GACs, PACs are computationally simpler and more

efficient [17]. Also, user interaction and a priori shape-constraints es-

tablishment are more straightforward due to explicit representation

of the curve [22]. Furthermore, they usually perform better in bound-

ary gaps [14]. However, in contrast, GACs have the ability of handling

topological changes which makes them preferable for segmentation

of complex shapes [19]. Also, although tuning of their parameters

is usually easier, the stopping criteria of level set methods may be

partially established based on the number of iterations [35].

In another aspect, deformable models can be divided into two

different categories: edge-based and region-based active contours

(EBAC and RBAC, respectively). EBACs use local edge-information to

attract the curve toward the object boundaries [36,53,54] or stop

its evolution [5,10]. They are partially sensitive to noise and initial-

ization [14]. RBACs have been proposed to tackle these problems

[6,37]. Their main contribution is identifying each region of interest

through statistical descriptors and homogeneity requirements in or-

der to evolve the curve. However, these models may not be able to

localize object boundaries as well as EBACs. To address this problem,

some researchers tried to integrate the edge and region-based mod-

els [4,21,37]. Despite promising results, the conventional RBACs may

fail to segment images with texture, inhomogeneous intensity, noise

corruption, or heterogeneous objects. Recently, patch-based varia-

tional formulations have been proposed as a solution to that problem

[11,24,26,32,46]. Instead, a large number of researchers incorporate

a priori shape information or statistical features into the energy func-

tional to effectively tackle the above challenge [1,12,13,39,45].
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1.2. Relationship between PACs and GACs

A traditional PAC is a parametric curve (x(s) = [x(s), y(s)], s � [0, 1])

which moves in the spatial domain to minimize the following energy

functional [20]:

e = 1
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where α and β are two scalar constants, s is the arc-length, and |�|

computes the norm of a vector. The potential function p(�) takes on

smaller values at features of interest in the image (e.g. object bound-

aries). In the above equation, the first and second integrals indicate

the internal and external energies, respectively. The former controls

the snake tension (α) and rigidity (β) while the latter is derived

from the image data. For example, the frequently-used Gaussian ex-

ternal energy can be given by using the following potential function:

pGSN(x, y) = −|∇ [Gσ (x, y)∗ I(x, y)]|2
(2)

where Gσ (x, y) is a two-dimensional Gaussian kernel with standard

deviation of σ ; and � is the gradient operator. An optimal snake

which minimizes e must satisfy the Euler–Lagrange equation. Thus,

we can write:

∂x

∂t
= f int + f

(p)
ext (3)

where f int = α ∂2x
∂s2 − β ∂4x

∂s4 and f
(p)
ext = −∇p are the internal- and

external-potential forces, respectively. Furthermore, in the above

equation, by using a dynamic force formulation, the potential force

f
(p)
ext can be replaced by the general force f

(g)
ext which is usually a com-

bination of potential and non-potential forces [54].

Furthermore, Xu et al. [51] stated that every external force can be

equivalently employed (with β = 0) to evolve a GAC as follows:

γ
∂ϕ

∂t
= (ακ + ωp)|∇ϕ| − f

(g)
ext · ∇ϕ (4)

where ϕ and κ are the level-set function and its curvature, respec-

tively; ωp indicates the constant deformation speed; and γ is a scalar

constant. Hereafter, we will focus on edge-based PACs considering

that the proposed method essentially belongs to that category of

snakes.

1.3. Edge-based parametric active contours

Edge-based PACs suffer a number of major drawbacks such as

dependency on the initial contour, difficult reconstruction of edge

openings, hard progressing into boundary concavities, marching over

weak edges (especially, next to strong edges), and invalid results for

inhomogeneous and noisy regions [9,53]. Most methods introduced

to address these drawbacks solve one problem while making new in-

conveniences. For example, multiresolution approaches increase the

capture range while moving the contour across different resolutions

remains a challenging task [8,10]. Balloon addresses both the capture

range and boundary concavity problems although weak edges may

be overwhelmed by using a too strong pressure force [9]. Further-

more, it requires careful initialization because the pressure force is

unidirectional. Park et al. [38] improved the snake performance by

integrating both the gradient direction and strength in the energy

functional. Nascimento and Marques [34] proposed adaptive snakes

using expectation maximization algorithm to avoid undesirable edge

points. Zhu et al. [55] proposed effective external forces by incorpo-

rating geometric information of an edge map into a virtual electric

field model. Another example is gradient vector flow (GVF) which

effectively tackles the capturing range and boundary concavity prob-

lems by minimizing an energy-functional [54]. Researchers proposed

a number of variations on GVF to improve its performance in various

aspects ([7,18,27,28,36,40,49,52]).

1.4. Proposed active contour

Considering the aforementioned difficulties of active contours,

some researchers proposed several contour extraction algorithms

which may inherently differ from snakes [48]. For example, Ida and

Sambonsugi [15] presented a highly accurate method to approach

and fit a roughly drawn line to the object contour by using the self-

affine mapping system (SAMSYS). However, sometimes, it abnormally

deforms the curve due to the fractal behavior.

The authors addressed this drawback by taking care of the curve

topology [44]. Besides, they employed contractive self-affine maps

(CSAMs) to propose self-affine snake (SAS) for medical images seg-

mentation [41,43]. This paper builds on our previous researches and

its main contributions are as follows:

• Establishing a comprehensive theoretical basis behind the design

of our algorithm and presenting the related technical details.
• Improving the cost function of CSAMs to avoid uncertainties

caused by multiple equivalent optimal translation vectors.
• Enhancing the computational burden of the proposed active con-

tour by using dynamically efficient implementation.
• Assessing the outstanding properties of the proposed active con-

tour such as providing large capture range, handling boundary

openings and concavities, preventing weak-edge leakage, and ro-

bustness against noise.
• Evaluating the performance of the proposed method compared

to a number of counterpart active contours such as balloon, GVF,

generalized GVF (GGVF) [53], and active contour without edges

(ACWE) [6] in terms of both solution quality and CPU time.

1.5. Paper outline

The remainder of the paper is organized as follows. In Section 2,

the self-affine mapping system is briefly introduced. In Section 3,

we present the mathematical principles of self-affine snake including

details of the main idea, improvements on the conventional cost func-

tion of CSAMs and dynamically efficient implementation. Section 4 is

devoted to experimental results and finally, conclusions are drawn in

Section 5.

The notations used in this paper are fairly standard. Matrices are

shown by upper case letters while boldface symbols are used for

vectors in lower case letters.

2. Self-affine mapping system

SAMSYS has been frequently used for fractal image coding [23] and

producing fractal figures [3]. However, most applications of SAMSYS

in the image processing domain including image segmentation, edge

detection, and contour extraction were initiated by Ida and Sam-

bonsugi [15,16]. All of these promising advances are usually based

on the attracting/repelling behaviors of contractive/expanding self-

affine maps which were experimentally demonstrated in [16] and

analytically proved in [42]. However, this paper is focused on only

CSAMs which are employed to provide self-affine forces.

2.1. Contractive self-affine maps

Consider an image having the domain 
i � R2 with the intensity

I(x) � [0, 1] for all x = (x, y) � 
i. The ith CSAM (mi:Mi → Wi) is

defined as follows:

xω = mi(x) = ri(x − x̄i)+ τ i + x̄i, ri < 1 (5)

where x̄i is the center point of Mi and τ i = (si, ti) is the corresponding

translation vector which moves the center point of Mi to the center

point of Wi. The above equation translates the domain-patch Mi by

τ i and contracts it by the scaling coefficient ri to make the range-

patch Wi (both �
i). To reduce computational burden, all scaling
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