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a b s t r a c t

Lesions of the brain’s white matter are common findings in MR examinations of elderly subjects. A fully
automatic method for segmenting white matter lesions is proposed here. The joint probability of multi-
modality MR image intensities is used as a feature to segment lesions, because lesion intensities usually
are outliers of the normal tissue intensities and the lesions’ joint intensity probability appears much
smaller than those of normal brain tissues. The v2 random field theory is used to determine the signifi-
cance of a detected lesion and provides a strict statistical analysis to exclude small-sized false-positive
lesions. Experimental results show that the automatic segmentation of lesions is in high agreement with
manual segmentation, and the v2 random-field-based statistical analysis greatly improves lesion seg-
mentation results.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Diffuse white matter (WM) lesions are characterized (mostly)
by a loss of myelin and an increase of extracellular space and re-
vealed by magnetic resonance imaging (MRI) techniques due to
their higher water content. These lesions are considered as a sign
of pathological aging (Deary et al., 2003). The demyelinization of
WM fibers may affect their conduction properties and lead to a de-
crease in cognitive performance, such as a subtle memory loss, a
slower processing speed, or an early fatigue (Gunning-Dixon and
Raz, 2000; de Groot et al., 2000). Obviously, the presence of WM le-
sions worsens the cognitive performance of patients suffering from
other neurodegenerative processes such as Alzheimer’s disease
(Skoog et al., 1996; Leys et al., 1990; Hirono et al., 2000).

Brain lesion segmentation approaches can be classified as man-
ual, semi-automatic (Zijdenbos et al., 1994; Udupa et al., 1997;
Hojjatoleslami and Kruggel, 2001), and fully automatic (Anbeek
et al., 2004; Lao et al., 2006; Kruggel et al., 2008; Dyrby et al.,
2008; Herskovits et al., 2008; Admiraal-Behloul et al., 2005; van
Leemput et al., 2001; Yang et al., 2004). Due to the large amount
of work required for manual segmentation, and the considerable
inter- and intra-rater variability of the results, semi- and fully
automatic brain lesion segmentation methods are preferred. In
semi-automatic methods, the user marks a seed location for a re-
gion growing algorithm that segments a lesion (Hojjatoleslami
and Kruggel, 2001) or accepts/rejects fuzzy-connected candidate

regions as brain lesions (Udupa et al., 1997). Semi-automatic ap-
proaches are not adequate for projects involving large databases
because of the amount of manual work required. All of the above
methods depend mainly on a voxel’s intensity to segment lesions.
Taking a different approach, Gerig et al. (2000) explored time do-
main features to classify lesions, but two or more MR scans of
the same subject must be available.

Fully automatic algorithms for WM lesion segmentation can be
grouped into two classes: supervised approaches (Anbeek et al.,
2004; Lao et al., 2006; Kruggel et al., 2008; Dyrby et al., 2008; Her-
skovits et al., 2008), in which classifiers such as K-nearest neigh-
bors, support vector machines, neural networks, or Bayes
classifiers are used to distinguish lesions from normal brain tis-
sues, and unsupervised methods (Admiraal-Behloul et al., 2005;
van Leemput et al., 2001; Yang et al., 2004). The first group of ap-
proaches requires neuroradiologists to manually segment lesions
in datasets of training subjects. Often, intensity normalization
across scans is necessary which may have an adverse effect on le-
sion segmentation. Most approaches of these two types do not take
spatial lesion information into account or apply heuristics to re-
move spurious small lesions (Admiraal-Behloul et al., 2005; Yang
et al., 2004). Spatial autocorrelations in the data are ignored, unless
the intensity of neighboring voxels is taken into account in the
classification process (Lao et al., 2006; Zhang and Chen, 2004; Chen
and Zhang, 2004).

In this paper, we propose an unsupervised approach for WM le-
sion segmentation. As proposed by van Leemput et al. (2001), we
model lesions as outliers in the multivariate intensity distribution
of healthy tissues. We compute the joint feature occurrence
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probability as revealed by multi-sequence MR images. Because
WM lesions are small and inhomogeneous, the joint intensity
probability of lesion voxels is much smaller than that of healthy
brain tissues. The resulting probability map is modeled as a v2 ran-
dom field in a second step, and we consider lesions as ‘‘unusual
events” in this random field and attach a probability to a cluster
of voxels for being a lesion (Cao, 1999). Thus, larger clusters of out-
liers are more likely to be classified as lesions. This statistically rig-
orous context for WM lesion detection is the core contribution of
this work.

2. Theory

Lesions are considered outliers of a multiple, multivariate inten-
sity distribution that represent the major tissue components in the
image, measured by the intensity joint occurrence probability.
Clusters of outlier voxels are rated for their probability of being a
true lesion using random field theory.

2.1. Intensity joint occurrence probability

Let Iv denote the intensity vector associated with voxel v in co-
registered multi-sequence MR images. Suppose a subject image
volume is composed of NC classes denoted by C1; . . . ;CNC . The joint
probability of the occurrence of the intensity vector Iv can be ex-
pressed as:

PðIvÞ ¼
XNC

k¼1

Pðv 2 CkÞPðIv jv 2 CkÞ: ð1Þ

We assume that intensities of healthy compartments in multi-se-
quence MR images are multivariate Gaussian distributed, in which
the variance is partially due to the structural variability of the com-
partment itself, partially due to the partial volume effect at bound-
aries, and partially due to additive white noise:

PðIv jv 2 CkÞ ¼ ðð2pÞdjRkjÞ�1=2 exp �1=2ðIv � lkÞ
TR�1

k ðIv � lkÞ
� �

;

ð2Þ

where lk represents the mean, Rk is the covariance matrix of (tis-
sue) class k, and d is the dimension of the intensity vector Iv , or here,
the number of imaging sequences. Most commonly, model param-
eters lk;Rk are determined by maximum likelihood estimation
(MLE) (Lehmann and Casella, 1998):

lk ¼
1
n

X
v

Iv and Rk ¼
1

n� 1

X
v
ðIv � lÞTðIv � lÞ; v 2 Ck:

ð3Þ
The breakdown point (defined as the proportion of samples

tending to infinity also makes the estimation go to infinity) of
the approach is 0. Estimating model parameters of healthy tissues
in the presence of lesions (with unusual or extreme intensity val-
ues) requires a robust method. Therefore, we use the minimum
covariance determinant (MCD) estimator (Rousseeuw, 1985). The
basic idea of this robust method is to estimate the mean and
covariance from a fraction f (usually 0:5 6 f < 1) of the whole
set of n voxels by minimizing the determinant of the covariance
matrix jRj with respect to the selection of n� f samples.

Because MCD estimation becomes very time-consuming if n is
large, Rousseeuw and van Driessen (1999) proposed a fast variant:
First, we randomly select ns subsets U1; . . . ;Uns with a small sample
size l (note that nsl < n), and determine their model parameters
using Eq. (3). Then, the following process for a set of samples U de-
noted as C-step is performed for each subset Uj:

1. Compute the Mahalanobis distance of each sample in the subset
using current parameter estimates l;R.

2. Sort the VðUÞ (the number of samples in set U) samples by their
Mahalanobis distance in ascending order.

3. Re-estimate the model parameters using the first VðUÞ � f sam-
ples in the list by Eq. (3).

4. Repeat steps 1–3 until the change in jRj falls below a pre-set
limit.

Thus, we obtain ns estimates lj;Rj. Now, we merge all the initial
subsets U1; . . . ;Uns into a larger one U� (note that U� does not in-
clude all the n samples but only nsl samples), and repeat the C-step
ns times with lj;Rjðj ¼ 1; . . . ;nsÞ as the starting estimates of the
parameters to find ns refined model parameter estimates with this
larger sample set U� denoted by l̂j;

cRjðj ¼ 1; . . . ;nsÞ. Finally, l�;R�

are determined for the full set of n samples by performing the C-
step ns times with the ns refined parameters l̂j;

cRjðj ¼ 1; . . . ;nsÞ
as the starting points and selecting the parameters with the small-
est covariant matrix determinant.

We model the brain extracted from T1-weighted MR images as
composed of three classes, roughly, white matter (WM), gray mat-
ter (GM), and cerebro-spinal fluid (CSF). Images are first segmented
using an algorithm based on hidden Markov random fields (Zhang
et al., 2001). Then, the fast MCD method is applied to robustly esti-
mate the mean and covariance matrix of the three classes. The
prior probability Pðv 2 CkÞ for each class is assumed to be equal
resulting in Pðv 2 CkÞ ¼ 1=NC . Finally, the joint occurrence proba-
bility PðIv Þ is computed for each voxel.

2.2. Modeling the joint probability distribution

For convenience, let us use the logarithm uv ¼ � logðPðIvÞÞ of
the joint probability (Eq. (1)) in the following. Because lesion vox-
els have an unusual joint intensity probability compared with nor-
mal brain tissues, larger values of uv indicate a higher probability
for being a lesion voxel.

Because uv corresponds to a logarithm of a multiple, multivari-
ate Gaussian distribution, deriving a closed-form expression for the
distribution of uv is not straightforward. Here we demonstrate that
there is an upper limit of uv , which is v2-distributed. Let us con-
sider the case of a single class first. For Nc ¼ 1;uv is related to
the squared Mahalanobis distance, denoted by r2

v :

uv ¼ 0:5ðIv � lkÞ
TR�1

k ðIv � lkÞ þ bk ¼ 0:5r2
v þ bk; ð4Þ

where bk corresponds to the sum of all log-transformed class-
dependent constants in Eqs. 1 and 2. The squared Mahalanobis dis-
tance r2

v is v2-distributed with degrees of freedom (DOF) d, the
number of components in the intensity vector Iv .

For the multi-class case Nc > 1, we exchange the summation in
Eq. (1) and the log-transformation when computing uv . Using Jen-
sen’s inequality and the fact that the negative logarithm (� logðxÞ)
is a convex function and

PNC
k¼1Pðv 2 CkÞ ¼ 1, we find:

uv ¼ � log
XNC

k¼1

Pðv 2 CkÞPðIv jv 2 CkÞ
 !

ð5Þ

6 �
XNC

k¼1

Pðv 2 CkÞ logðPðIv jv 2 CkÞÞ: ð6Þ

Because the class-wise prior probability Pðv 2 CkÞ is often assumed
to be 1=NC , it follows:

uv 6�
1

NC

XNC

k¼1

logðPðIv jv 2 CkÞÞ ð7Þ

¼ 1
2NC

XNC

k¼1

ðr2
v þ 2bkÞ ð8Þ

¼ 1
2NC

XNC

k¼1

r2
v þ b; ð9Þ
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