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a b s t r a c t

Multiclass operating characteristics are a generalisation of the two-class receiver operator characteristic.
A limitation regarding this generalisation is the computational complexity with increasing numbers of
classes. In this paper, the ROC skeleton approach is proposed for efficiently estimating the operating char-
acteristic. New operating points are computed from actual training samples, versus an alternative
approach involving grid generation, that is prone to redundant calculations, and poor adaptation to cer-
tain classifier architectures. An extensive experimentation with a number of datasets and classifiers as a
function of the number of calculations reveals the efficiency of this approach. Also notable is how in many
cases good performance can be achieved with surprisingly few calculations, but the converse may also
apply.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

When optimising and evaluating pattern recognition systems, it
has become increasingly apparent that many real problems exist in
non-ideal, varying environments, or in situations where different
classification outcomes are more important than others. Operating
characteristics (commonly known as Receiver Operator Character-
istics or ROC’s (Metz, 1978)) are a helpful design and evaluation
tool for these circumstances.

Research into the use of operating characteristics has been his-
torically focused on the 2-class case, but more recently the multi-
class case has attracted attention (Srinivasan, 1999; Everson and
Fieldsend, 2005; Landgrebe and Duin, 2008). Most effort in this
area has concentrated on approaches for cost-sensitive optimisa-
tion (Lachiche and Flach, 2003; O‘Brien and Gray, 2005; Landgrebe
and Duin, 2007; Everson and Fieldsend, 2005; Bourke et al., 2008).
However, these methods do not directly use the ROC in determin-
ing new operating points. There are nevertheless a number of com-
pelling reasons that justify multiclass ROC computation. The full
ROC allows classifier performance to be assessed for classification
problems in which there is some uncertainty regarding conditions
(imprecise environments (Provost and Fawcett, 2001). For example
the Area under the 2-class ROC (Bradley, 1997), or volume under
the multiclass ROC hypersurface (Ferri et al., 2003; Landgrebe
and Duin, 2006), result in performance criteria independent of spe-
cific operating points. If conditions change (prior probabilities or

costs), a trained classifier can be updated immediately by selecting
the most appropriate operating point from the ROC. Other advan-
tages are that an ROC results in the optimal operating point for
cost-sensitive optimisation, which is not always the case for alter-
native approaches, and the ROC allows a trained classifier to be set
up as per the classifier with constraints approach (Landgrebe and
Duin, 2005; Edwards et al., 2004), in which specific error or perfor-
mance outcomes can be constrained.

Even though two-class ROC approaches do generalise to the
multiclass case, it is however now understood that computing
the full ROC becomes intractable for large numbers of classes
(Landgrebe and Duin, 2007). Nevertheless problems with low
numbers of classes are abundant in pattern recognition (e.g. 3–8
classes), and can benefit from ROC analysis. Works in (Landgrebe
and Duin, 2005, 2006, 2008) did indeed successfully demonstrate
full multiclass ROC analysis in a variety of circumstances. However,
it was found that there were a number of issues regarding the ap-
proach. Firstly many of the calculations were found to be redun-
dant. Secondly certain classifier architectures required far more
calculations than others. A primary realisation leading to the algo-
rithm proposed in this paper was that it is important to take the
scaling of the specific classifier output into consideration. This pa-
per thus proposes the ROC skeleton algorithm, based on the idea of
deriving new operating points from actual examples in an inde-
pendent validation set, inspired by the optimal 2-class case algo-
rithm (Fawcett, 2005), and a number of multiclass cost-sensitive
optimisation algorithms presented recently (Bourke et al., 2008).
This helps overcome the issues discussed, resulting in a more effi-
cient methodology that can be used to compute operating charac-
teristics for higher numbers of classes, and cope with arbitrary
classifier architectures.
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The paper is structured as follows: In Section 2 a notation is
established, followed by a formalisation of two multiclass ROC
algorithms in Section 3, called the Log weights and ROC skeleton
algorithms, respectively. For multiclass problems, the ROC skeleton
approach is modified, involving sampling of the base ‘‘skeleton”.
This results in an algorithm that is computationally scalable to
more classes, but is an approximation of the true operating charac-
teristic. The two approaches are then compared in a variety of
experimental circumstances in Section 4, where various problems,
numbers of calculations, and classifier architectures are consid-
ered. Finally, conclusions are presented in 5.

2. Multiclass analysis framework

Consider a classical pattern recognition problem where exam-
ple objects pertaining to C classes, x1;x2; . . .xC are to be discrim-
inated based on measurements, as per the measurement vector x.
A classifier F acts upon x, resulting in C possible outcomes (e.g.
probability estimates) as follows, where f ðxijxÞ is the probabilistic
classifier output corresponding to the ith class:

FðxÞ ¼ ½f ðx1jxÞ f ðx2jxÞ � � � f ðxC jxÞ� ð1Þ

Classification decisions can be made simply by considering the larg-
est output:

argmaxC
i¼1f ðxijxÞ ð2Þ

The classifier outputs are dependent on the algorithm architecture
e.g. posterior probability density estimates for density-based classi-
fiers, distances to prototypes for nearest-neighbour classifiers, or
distances to support vectors (Li and Sethi, 2006). The confusion ma-
trix is a standard evaluation used, indicating the nature of true and
false classifications resulting from a test. It is typically used as a ba-
sis for subsequent simplified evaluation e.g. error-rate analysis is
simply an average of all classification errors. The confusion matrix
is denoted S, with a dimensionality of C � C, and the ði; jÞth element
denoted si;j (representing the error between the ith and jth classes
for off-diagonal elements, or the performance for the ith class for
diagonal elements).

A more convenient manner in which to inspect the classification
outcome is to normalise outputs corresponding to the ith class xi

by the number of per-class samples Ni (with the total number of
samples N ¼

PC
i¼1Ni), resulting in the confusion-rate matrix N.

The ði; jÞth element of N is denoted ni;j, defined as ni;j ¼
si;j

Ni
.

3. Multiclass ROC algorithms

It is important to note that the (trained) classifier behaviour can
be manipulated by weighting of the classification outcomes FðxÞ
via a classifier weight-vector U ¼ ½/1;/2; . . . /C �;/i P 0; 8i. Simi-
larly modifying prior probabilities would have the same effect.
Thus each classification output is scaled, resulting in a modified
classification behaviour. Class assignment is now based on:

argmaxC
i¼1/if ðxijxÞ ð3Þ

The confusion-rate matrix N is thus only one possible outcome of
many, given the independent test set xts. A new outcome is referred
to as an ‘‘operating point”. Different U configurations result in dif-
ferent classification outcomes, or operating points. However, the
manner in which the confusion-rate matrix varies is not obvious,
in fact in general the relation between classifier weights, and confu-
sion matrix outcomes cannot be predicted a priori. This is a multi-
dimensional problem, in which C degrees of freedom are used to
manipulate C � C classification outcomes1.

It is this relationship between the weight vector and the classi-
fication outcome that is revealed by ROC analysis. Thus the ROC
establishes a multi-dimensional surface within the confusion-rate
matrix evaluation space,2 defining the N by one point on this sur-
face. It can thus be used to inspect performance for a variety of sit-
uations, and also to choose a U that best suits a given problem. As
discussed in (Paclı́k et al., 2008), in real problems these ROC sur-
faces generated from different test sets will also exhibit statistical
variability, that should also be accounted for.

Constructing the multiclass ROC is actually very simple in prin-
ciple. The procedure is to store the various N outcomes corre-
sponding to all possible U combinations. It is the generation of
these U combinations that presents challenges to multiclass ROC
calculation:

� Since this is a discrete, multidimensional process, the resolution
of the U weightings must be high enough to characterise the
ROC surface accurately.

� Different classifiers may have vastly-different output scalings,
depending on the architecture used, and the data distribution.
The U values should take this into consideration to minimise
redundant calculations.

Next two different ROC methods are presented. The first has
been proposed previously (Landgrebe and Duin, 2007, 2008), dis-
cussed in Section 3.1. The second is the proposed ROC skeleton ap-
proach, with similarity to the approach proposed recently in
(Bourke et al., 2008), presented in Section 3.2. Each method has a
multitude of possible variations, but this study concentrates on
two configurations that were seen to perform consistently well
in a variety of circumstances.

3.1. Data-independent logarithmic grid method

The approach taken here is to generate a ðC � 1Þ dimensional
grid of weightings/thresholds (one of the weightings is held con-
stant), considering all possible combinations of inter-class weigh-
tings. The resolution of the grid is denoted r, with a size of
rC�1 � C, immediately highlighting the primary limitation for this
method, namely the exponential computational complexity with
increasing numbers of classes. The resolution must be fine enough,
and the scale of each weight adequately chosen to ensure the oper-
ating characteristic is well sampled. A logarithmic scale H is used
due to the wide range of possible output values of different classi-
fiers, with H ¼ ½h1; h2; . . . ; hr�. In this paper, the following scale is
used (with a1 ¼ �3 and a2 ¼ 3), resulting in r weightings per
dimension:

H ¼ 10a1 ;10 a1þ
a2�a1

r�1

� �
;10 a1þ2

a2�a1
r�1

� �
; . . . ;10 a1þðr�2Þa2�a1

r�1

� �
;10a2

� �
ð4Þ

This method is called the Log weights approach.

3.2. The ROC skeleton approach

In the 2-class case, the ROC is monotonically increasing, so effi-
cient generation of thresholds is typically achieved using ordering
of data sample outputs (Fawcett, 2005). A threshold is then applied
to each ordered sample such that all samples above and below the
decision threshold are classified, respectively, to the first or second
class. Traversal of each sorted test object leads to the optimal ROC.
This is an optimal approach (with respect to the dataset used to
estimate the ROC) since a new operating point is only defined once

1 To be strict, there are in fact only C2 � C dimensions, since ni;i ¼ 1�
PC

j¼1ni;j; j – i. 2 Confusion-rate matrix elements become dimensions within this hyperspace.
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