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a b s t r a c t

Habitat mapping is a core element in numerous tasks related to sustainability management, conservation
planning and biodiversity monitoring. Land cover classifications, extracted in a timely and area-extensive
manner through remote sensing data, can be employed to derive habitat maps, through the use of domain
expert knowledge and ancillary information. However, complete information to fully discriminate habitat
classes is rarely available, while expert knowledge may suffer from uncertainty and inaccuracies. In this
study, a rule-based classification methodology for habitat mapping through the use of a pre-existing land
cover map and remote sensing data is proposed to deal with uncertainty, missing information, noise
afflicted data and inaccurate rule thresholds. The use of the Dempster–Shafer theory of evidence is
introduced in land cover to habitat mapping, in combination with fuzzy logic. The framework is able
to handle lack of information, by considering composite classes, when necessary data for the discrimina-
tion of the constituting single classes is missing, and deal with uncertainty expressed in domain expert
knowledge. In addition, a number of fuzzification schemes are proposed to be incorporated in the meth-
odology in order to increase its performance and robustness towards noise afflicted data or inaccurate
rule thresholds. Comparison with reference data reveals the improved performance of the methodology
and the efficient handling of uncertainty in expert rules. The further scope is to provide a robust
methodology readily transferable and applicable to similar sites in different geographic regions and
environments. Although developed for habitat mapping, the proposed rule-based methodology is flexible
and generic and may be well extended and applied in various classification tasks, aiming at handling
uncertainty, missing information and inaccuracies in data or expert rules.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Habitat mapping is mainly performed through either in situ or
remote sensing observations, the latter being increasingly popular
due to their advantages in large area coverage, time and cost
efficiency (Nagendra, 2001). Land cover (LC) maps extracted from
remote sensing data in a more straightforward way, are often used
as proxies for habitat map extraction, since they describe observa-
ble characteristics of a landscape, through the use of ancillary
information. Habitat changes constitute significant indicators for
biodiversity monitoring, ecosystem preservation and sustainability
management, thus their mapping attracts the interest of various

organizations and authorities worldwide (Bunce et al., 2013;
Schmeller, 2008). Based on the generalized trend of international,
national and regional authorities in producing LC maps, partially
due to legal obligations (Tomaselli et al., 2013), an efficient
framework for the conversion of LC into habitat classes is largely
beneficial for sustainability management, conservation planning
and biodiversity monitoring.

A large variety of classification approaches has been employed
and evaluated to perform habitat or LC mapping using remote sens-
ing data. They include supervised (Chan et al., 2012; Walker et al.,
2010; Féret and Asner, 2012; Longépé et al., 2011; Vyas et al.,
2011) or unsupervised (Muad and Foody, 2012; Mwita et al.,
2013) classification techniques. In cases where prior expert knowl-
edge is available in the form of explicit rules, rule-based approaches
may be employed to incorporate such information in the classifica-
tion process (Kumar and Patnaik, 2013; Lucas et al., 2011a; Evans
et al., 2010). Although efficient in a number of classification tasks,
such methods may prove inadequate in handling uncertainty, due
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to missing information, and inaccuracies, caused by noisy data or
vague rules. Such problems are common in remote sensing applica-
tions, where, on the one hand, necessary sensor or ancillary data
may be unavailable for certain landscapes, and, on the other hand,
noise affliction may be introduced to the data, during acquisition
and processing, such as registration, quantization and topographic
and atmospheric correction. Despite various attempts in LC to
habitat conversion (Adamo et al., 2013; Tomaselli et al., 2013), no
previous framework has been suggested employing evidential rea-
soning for handling uncertainty and missing information.

Dempster–Shafer (DS) theory, a mathematical theory of evi-
dence, has been broadly used for information fusion and handling
uncertainty and missing data (Saffiotti, 1994; Yager, 1987). In pat-
tern recognition, DS theory has been used, principally, to combine
results generated from multiple classifiers, even resulting in differ-
ent classes (Ahmadzadeh and Petrou, 2003), and, less frequently, as
the core of individual rule-based inference engines.

Combining the results of different classifiers, DS has been ap-
plied in numerous fields, including three-dimensional object
reconstruction (Díaz-Más et al., 2010), industrial parts inspection
(Osman et al., 2011; Basir and Yuan, 2007; Kaftandjian et al.,
2003), desertification risk and water quality assessment
(Ahmadzadeh and Petrou, 2001; Aminravan et al., 2011), medical
imaging (Bloch, 1996), road extraction from satellite images
(Cleynenbreugel and Osinga, 1991), speaker identification (Chen
et al., 1997) and optical character recognition (Rogova, 1994),
providing results outperforming those derived from the individual
classifiers. Fuzzy logic has been incorporated in various classifier
fusion tasks using DS theory, in order to deal with data and rule
vagueness (Deng et al., 2011; Zhang et al., 2011; Deng et al.,
2010; Wu, 2009). In landscape characterization, fuzzy DS frame-
works have been used to combine sensor data (Sarkar et al.,
2005; Pinz et al., 1996) or contextual information (Laha et al.,
2006) to improve classification.

Individual rule-based classifiers have also been designed based
on the combination of DS theory and fuzzy logic (Liu et al., 2004;
Parikh et al., 2001; Yager, 1992). In landscape monitoring, DS theory
with fuzzy sets has been used for LC classification in agricultural
(Lein, 2003) and complex landscapes (Cayuela et al., 2006). The abil-
ity of the theory to incorporate multiple sources of information has
been demonstrated by Franklin et al. (2002), where a classifier
based on DS was compared with a conventional maximum likeli-
hood classifier unable to incorporate all available ancillary informa-
tion, thus resulting in significantly lower accuracy in discriminating
habitat classes, compared with the DS-based classifier.

The contribution of this study lies in the proposal of a robust
methodology based on DS theory and incorporating fuzzy logic
for habitat mapping using remote sensing data. The proposed
methodology builds on a pre-existing LC map and converts it into
a habitat map, incorporating domain expert rules and additional
information. Different fuzzification approaches are proposed and
introduced to the DS theory framework to deal with inaccurate
rules provided by domain experts or noise afflicted data. The objec-
tive is to increase the framework robustness and make it readily
applicable and transferable to similar landscapes in different
locations. The flexibility of the framework in handling composite
classes when adequate information for the discrimination of single
classes is missing is also studied.

2. Application field and methods

2.1. Land cover to habitat mapping

The application field of the proposed fuzzy evidential reasoning
classification approach lies in the area of ecological monitoring,

biodiversity assessment and ecosystem preservation. In particular,
the developed classification framework deals with the fusion of
diverse information and rules provided by domain experts for
habitat mapping, based on a LC map and through the use of remote
sensing data.

The employed LC map is expressed in the Land Cover Classifica-
tion System (LCCS) taxonomy, proposed by the United Nations
Food and Agriculture Organization (FAO) (di Gregorio and Jansen,
2005). LCCS classes are organized in eight main categories, depend-
ing on whether the area element of interest is vegetated or not,
aquatic or terrestrial and managed or artificial or (semi-) natural.
Classes are further refined with the inclusion of additional infor-
mation, such as life form (e.g., woody or herbaceous vegetation),
vegetation coverage, leaf type and phenology (e.g., broadleaved,
evergreen, deciduous), canopy height, soil type and lithology. LCCS
taxonomy has been proposed as a generic framework able to de-
scribe adequately any LC class globally, while has been recently
recognized as the most appropriate LC taxonomy to serve as basis
for habitat mapping (Tomaselli et al., 2013).

Habitat classification in this study is expressed in a recently
developed taxonomy, the General Habitat Categories (GHC), based
on life and non-life forms (Bunce et al., 2008). GHC classes are or-
ganized in five main categories, namely: (i) urban, (ii) cultivated,
(iii) sparsely vegetated, (iv) trees and shrubs and (v) herbaceous
vegetation. Various classes belong in each category, based on life
or non-life forms present in a studied area element, leaf properties,
height of canopy, etc. The classes were initially defined to link
in situ and remote sensing observations, thus facilitating their
extraction through data derived from satellite or airborne sensors.

Based on a LCCS map, information from remote sensing and
ancillary data is combined using evidential reasoning to perform
habitat classification of a study area, using expert decision rules
(Kosmidou et al., 2014; Adamo et al., 2013). DS theory is employed
to handle uncertainty and multiple classes, when adequate informa-
tion for the discrimination among single classes is unavailable, and
to provide a framework for embedding fuzzy logic to counteract for
noisy data and increase framework robustness and transferability.

2.2. Dempster–Shafer theory principles

DS theory, introduced by Dempster (1967) and Shafer (1976), is
a mathematical theory of evidence, considered as a generalised
form of the Bayesian theory of subjective probability. It is popular
in rule-based expert systems, mainly because of its ability in han-
dling uncertainty, lack of information and vague rules leading to
composite events (Ahmadzadeh and Petrou, 2003).

To each individual event, or set of events, belief and plausibility
values are assigned, defining a belief interval. Belief on an event ex-
presses the degree of confidence that the event holds, based on
supporting evidence. Its plausibility value reflects the highest con-
fidence on an event if all missing information were to support its
validity. The difference between the plausibility and belief of a sin-
gle or composite event expresses its uncertainty. When no uncer-
tainty exists, plausibility and belief values coincide.

One of the principal concepts in DS theory is the basic probabil-
ity assignment function, m, describing the degree an event, A, from
the set of all possible events, or frame of discernment H, is sup-
ported with evidence. A can be a single event or a set of two or
more single events; m values assigned to the latter indicate lack
of adequate evidence to distinguish among the single events. The
m values assigned to all subsets of H sum up to 1.

The belief function, bel : 2H ! ½0;1�, of a set A # H, is defined as
the summation of the m values of all subsets of A, i.e.,

belðAÞ ¼
X

X # A

mðXÞ; for all A # H: ð1Þ
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