
Online gesture recognition from pose kernel learning
and decision forests

Leandro Miranda a, Thales Vieira a, Dimas Martínez a, Thomas Lewiner b,⇑,
Antonio W. Vieira c,d, Mario F. M. Campos c

a Institute of Mathematics, UFAL, Maceió, Brazil
b Department of Mathematics, PUC–Rio, Rio de Janeiro, Brazil
c Department of Computer Science, UFMG, Belo Horizonte, Brazil
d Department of Mathematics, UNIMONTES, Montes Claros, Brazil

a r t i c l e i n f o

Article history:
Available online 16 October 2013

Communicated by Carla Dal Sasso Freitas

Keywords:
Online gesture recognition
Key pose identification
Skeleton representation
Depth sensors
3D motion
Natural user interface

a b s t r a c t

The recent popularization of real time depth sensors has diversified the potential applications of online
gesture recognition to end-user natural user interface (NUI). This requires significant robustness of the
gesture recognition to cope with the noisy data from the popular depth sensor, while the quality of
the final NUI heavily depends on the recognition execution speed. This work introduces a method for
real-time gesture recognition from a noisy skeleton stream, such as those extracted from Kinect depth
sensors. Each pose is described using an angular representation of the skeleton joints. Those descriptors
serve to identify key poses through a Support Vector Machine multi-class classifier, with a tailored pose
kernel. The gesture is labeled on-the-fly from the key pose sequence with a decision forest, which natu-
rally performs the gesture time control/warping and avoids the requirement for an initial or neutral pose.
The proposed method runs in real time and its robustness is evaluated in several experiments.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Human gesture recognition is an active topic of research and
covering a wide range of applications including originally monitor-
ing, control and analysis. More recently, several applications use
real-time (online) gesture recognition to control entertainment de-
vices such as game consoles, virtual reality setups, motion capture
to graphics model animation, or automatic control of domestic
utilities.

The variety of potential applications have intensified the efforts
to improve the automatic recognition of human gestures. The evo-
lution and popularization of depth sensors, which currently gener-
ate depth maps in real time as well as their skeletons, is paving the
way for the development of high quality natural user interface
(NUI) beyond their use as game consoles. Improving the quality
of a NUI essentially means to increase the execution speed of the
gesture identification and its robustness, in particular with noisy
data such as skeletons extracted from Kinect sensors, and this is
the objective of the present work.

The gesture recognition problem can be stated as the process of
automatically labeling gestures performed by a person based on
sensory data, usually captured as sequences of positions in space.
This is a particularly challenging task, specially considering that
different users perform gestures with different speeds and distinct
sequences of poses. In this work, we propose a gesture recognition
method from captured skeletons in real time that tackles the afore-
mentioned issues. More specifically, all our experiments are per-
formed using the popular Kinect platform, a real-time depth
sensing system that parses a depth-map stream at 30 frames per
second, from which positions of the skeleton nodes for each frame
can be estimated in real time (Shotton et al., 2011).

Contributions: A human gesture can be formally described as the
continuous evolution of body poses over time. Interestingly, we
verbally describe such gestures by sequentially identifying a few
extreme poses, referred to as key poses (Lv and Nevatia, 2007), as
illustrated in Fig. 1. In this case, we recognize a gesture by extract-
ing those key poses, classifying them, and then identifying se-
quences of key poses as a gesture. Following this observation, we
focus here on improving and tailoring the three main ingredients
of key pose gesture recognition: pose descriptor, pose identifica-
tion, and labeling of pose sequences.

Our pose descriptor relies on spherical angular representations
of joints, similarly to the recent work of Raptis et al. (2011). How-
ever, our method is more robust for usual gestures, and it allows
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for real-time pose classification. In particular, it improves the rep-
resentation of secondary joints (arms, hands, legs and feet) to bet-
ter suit NUI applications.

The pose identification process combines several Support Vec-
tor Machine (SVM) classifiers (Vapnik, 2000), one per reference
key pose. We propose a pose kernel that entails the angular nature
of our representation, and use that pose kernel distance in feature
space as the confidence measure. This pose kernel significantly im-
proves the robustness of the method over a kernel based on Euclid-
ean distances (Miranda et al., 2012b), as seen in the results section.
Moreover, the small pose descriptor size allows for online training
and recognition.

Finally, we propose a scheme for gesture recognition based on
decision forests. Each forest node is a key pose, eventually includ-
ing time constraints, and the leaves are the gesture labels. This
decision forest is learned during the training phase. Each tree is
rooted at a key pose, and a leaf-to-root path represents a possible
sequence of key poses of that leaf gesture. At each identification of
a new key pose, the tree rooted at that pose is used to check if it
completes a gesture. This allows for real time gesture recognition
without the need for a neutral/initial pose. Moreover, the decision
state machine produces a natural and robust time warping. The
whole process is robust even with noisy depth-based skeletons
(Shotton et al., 2011) as shown in the results section.

This paper presents an extension of a previous work (Miranda
et al., 2012b). While in that paper the pose kernel relies on Euclid-
ean distances, in the present work we propose a different metric
more suitable to our problem. Experiments with this new kernel
show significative improvements on the recognition rate. More-
over, we adopted a combination of an out-of-sample approach
with a gradient descent search to accurately calibrate kernel
parameters. Finally, time constrained gestures are further evalu-
ated through new experiments.

2. Related work

Human gesture recognition has been extensively studied, and a
large body of literature has been produced for application in areas
such as surveillance, home monitoring and entertainment. We
summarize here the most related work for gesture recognition
according to the spatial representation used: local, global or
parametric.

In the local category, the methods typically use point-wise
descriptors evaluated at some points of interest, and then use a
bag of features (BoF) strategy to represent actions. This approach
has attracted much attention in the past few years (Sun et al.,
2009; Cao et al., 2010; Kovashka and Grauman, 2010; Niebles
et al., 2010), and an example of largely used local feature is the
Space–Time Interest Point (STIP) presented by Laptev and
Lindeberg (2003). A drawback of local features approaches is that
they lose spatial context information between interest points.

The methods in the global category use features such as silhou-
ettes (Lv and Nevatia, 2007; Weinland and Boyer, 2005; Li et al.,
2008) or template based representations (Chen et al., 2007; Bobick
and Davis, 2001), where spatial context information is preserved.
However, global features usually miss some precise details of the
pose such as body joints identification.

Finally, parametric methods try to reconstruct a model of the
human body with identification of joints to obtain an skeleton.
Skeletons can be obtained by strategies such as the Motion Capture
(MoCap) models (e.g., public databases available at http://mo-
cap.cs.cmu.edu, http://www.moves.com, and http://

www.mpi-inf.mpg.de/resources/HDM05/), where a set of mark-
ers is attached to the human body at specific points that are
tracked during motion. Using this representation, spatial features
are constructed using some geometric measures and relations,
e.g., angles (Kovar, 2004; Forbes and Fiu, 2005) and body joints
positions (Müller and Röder, 2006; Müller et al., 2009). In particu-
lar, Vieira et al. (2012) show that the matrix of distances between
body joints completely describe a pose up to rigid movements, and
such matrices serve to define low-dimensional invariant features
for classifying actions.

MoCap skeletons strongly depend on rather sophisticate cap-
ture systems. A more accessible way to generate skeletons is pro-
posed by Shotton et al. (2011), who obtain skeletons without
markers by computing joint coordinates in real time from depth
maps. In particular, such skeletons can be obtained from the pop-
ular Kinect sensor. Compared to MoCap data, skeletons from Kinect
are easier to obtain, which have driven the popularity of this sen-
sor. However, they show a high level of noise and spatial disconti-
nuity, turning gesture recognition from depth data a sizable
challenge, and that is the focus of the present work.

Gesture recognition using skeletons from Kinect has received a
lot of attention recently. In particular, Li et al. (2010) published the
MSR Action3D dataset, a database with depth maps sequences and
their respective skeletons, composed of 20 different short and non-
repetitive action classes, each performed by several subjects (Liu,
2011). They distinguish three different subsets and present their
classification rate obtained for each test. This dataset became a
benchmark for several recent works (Vieira et al., 2012b; Yang
and Tian, 2012; Yang et al., 2012). We also use this dataset to val-
idate our approach for action classification and present compara-
tive results with other state-of-the-art works in the literature.

Reyes et al. (2011) obtain 3D coordinates of skeletal models
using a reference coordinate system to make the description view
point invariant and tolerant to corporal differences among sub-
jects. Results are reported for only five different categories. Raptis
et al. (2011) introduce a method for classifying dance gestures
using Kinect skeletons where a large number of gesture classes
are used. Their pose descriptor uses spherical coordinates in a
frame obtained by Principal Component Analysis on a subset of
the body points that define the torso. In spite of the high recogni-
tion rate reported, their classification method is limited to dance
gestures and is conceived based on the strong assumption that
the input motion adheres to a known music beat pattern. We
extend their pose descriptor to a completely invariant angular rep-
resentation. Vieira et al. (2012b) propose a global feature, called
Space–Time Occupancy Patterns for action recognition from depth
map sequences where space and time axes are used to define a 4D
grid. A saturated histogram of point count in the grid cells is used
as features for action classification. Yang and Tian (2012) propose a
new type of feature based on position differences of joints which
combines action information including static posture, motion,
and offset. They employ the Naïve-Bayes-Nearest-Neighbor classi-
fier for multi-class action classification and also explore the num-
ber of frames that are needed to classify the actions. Yang et al.
(2012) project depth maps onto three orthogonal planes and accu-
mulate global activities across entire video sequences to generate
the Depth Motion Maps (DMM). Histograms of Oriented Gradients
(HOG) are then computed from DMM as the representation of an
action video. Note that the pose descriptor used in the works of
Li et al. (2010), Vieira et al. (2012b), Yang and Tian (2012), Yang
et al. (2012) are sensitive to the orientation of the capture device.

Fig. 1. Gesture representation from key poses: our method represents a body
gesture as a sequence of a few extreme body poses, referred to as key poses. In the
example above, a gesture composed by opening arms and then clapping hands is
represented by the key poses in black.
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