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a b s t r a c t

We present an algorithm for multiclass semi-supervised learning, which is learning from a limited
amount of labeled data and plenty of unlabeled data. Existing semi-supervised learning algorithms use
approaches such as one-versus-all to convert the multiclass problem to several binary classification
problems, which is not optimal. We propose a multiclass semi-supervised boosting algorithm that solves
multiclass classification problems directly. The algorithm is based on a novel multiclass loss function
consisting of the margin cost on labeled data and two regularization terms on labeled and unlabeled data.
Experimental results on a number of benchmark and real-world datasets show that the proposed
algorithm performs better than the state-of-the-art boosting algorithms for multiclass semi-supervised
learning, such as SemiBoost (Mallapragada et al., 2009) and RegBoost (Chen and Wang, 2011).

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Supervised learning methods are effective when there are suffi-
cient labeled instances. In many applications, such as object detec-
tion, document and web-page categorization, labeled instances
however are difficult, expensive, or time consuming to obtain
because they require empirical research or experienced human
annotators. Semi-supervised learning algorithms use not only the
labeled data but also the unlabeled data to build a classifier. The
goal of semi-supervised learning is to combine the information in
the unlabeled examples with the explicit classification information
of labeled examples for improving the classification performance
(Chapelle et al., 2006).

However, most existing semi-supervised methods were
designed for binary classification problems (Bennett et al., 2002;
Belkin et al., 2006; Mallapragada et al., 2009). To solve the multi-
class classification problem two main approaches have been
proposed. The first is to convert the multiclass problem into a set
of binary classification problems. Examples of this approach in-
clude one-vs-all, one-vs-one, and error-correcting output code
(Dietterich and Bakiri, 1995). This approach can have various prob-
lems such as imbalanced class distributions, increased complexity,
no guarantee to obtain an optimal joint classifier or probability
estimation, and different scales for the outputs of generated binary
classifiers which complicates combining them, see Jin and Zhang
(2007) and Saberian and Vasconcelos (2011). The second approach
is to use a multiclass classifier directly. Although a number of

methods have been proposed for multiclass supervised learning,
for example Mukherjee and Schapire (2013), Zhu et al. (2009)
and Saberian and Vasconcelos (2011), they are not able to handle
multiclass semi-supervised learning, which is the aim of this study.

In this paper we present a boosting algorithm for multiclass
semi-supervised learning, named Multi-SemiAdaBoost (MSAB).
Unlike many semi-supervised learning algorithms that are exten-
sions of specific base classifiers to semi-supervised learning, such
as Semi-Supervised SVM (Bennett and Demiriz, 1999), low density
separation (Chapelle et al., 2006), Transductive SVM (Joachims,
1999), and LapSVM (Belkin et al., 2006), MSAB can boost any base
classifier. It minimizes both the empirical error on labeled data and
the inconsistency over labeled and unlabeled data based on both
cluster and manifold assumption (Chapelle et al., 2006). This
generalizes the SemiBoost (Mallapragada et al., 2009) and the Reg-
Boost (Chen and Wang, 2011) algorithms from binary to multiclass
classification using a coding scheme for the multiclass classifica-
tion problem (Zhu et al., 2009). Our proposed method uses the
margin on labeled data, the similarity among labeled and
unlabeled data, and the similarity among unlabeled data in an
exponential loss function. We give a formal definition of this loss
function and derive functions for the weights of classifiers and
unlabeled data by minimizing an upper bound on the objective
function. We then compare the performance of the algorithm to
(a) binary algorithms with smoothness regularizer used in the
one-versus-all scheme to handle multiclass classification (Reg-
Boost and SemiBoost), (b) a boosting multiclass semi-supervised
learner without smoothness regularizer (Song et al., 2011 and
Bennett et al., 2002), and (c) the supervised multiclass AdaBoost
learning algorithm (Zhu et al., 2009), which is trained only on
labeled data, to evaluate the effect of using unlabeled data. The
results of the experiments on the benchmark UCI datasets show
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that MSAB outperforms the other boosting algorithms and gives
the best results. We also present a variation of the MSAB algorithm
to show the effect of boosting on labeled data. We further apply the
MSAB method on real-world application problems, text classifica-
tion and bird behavior recognition, to show how MSAB can exploit
information from unlabeled data to improve the classification
accuracy.

This paper is organized as follows: Section 2 addresses the re-
lated work on semi-supervised learning. Sections 3 and 4 formalize
the setting and the loss function. Section 5 derives the weights for
the boosting algorithm. The variation of the proposed algorithm is
presented in Section 6. Sections 7 and 8 present the experiments
and the results, the results of experiments on real-world applica-
tions are presented in Sections 9 and 10, and finally Section 11
draws the main conclusions.

2. Related work

Methods for semi-supervised learning vary in the underlying
assumptions. Two main semi-supervised assumptions are the
manifold and cluster assumption (Chapelle et al., 2006).

The manifold assumption is that the (high-dimensional) data lie
on a low-dimensional manifold. Many graph-based semi-super-
vised learning methods are based on this assumption, for example
Markov random walks (Jaakkola, 2002), Label propagation (Zhu
and Ghahramani, 2002), and Local and Global consistency (Zhou
et al., 2004). These methods build a graph based on the pairwise
similarity between examples (labeled and unlabeled). The goal is
then to estimate a function on the graph that minimizes the loss
on labeled examples and is smooth on the whole graph. In other
words, graph-based methods learn the manifold structure of the
feature space with labeled and unlabeled data and use this infor-
mation to improve the performance of the supervised learning
algorithm, see Fig. 1. Manifold regularization (Belkin et al., 2006)
is another discriminative learning algorithm based on the manifold
assumption. It constructs a large-margin classifier on the data
while minimizing the corresponding inconsistency between data
using the similarity matrix. Our proposed method is closely related
to the graph-based approaches in the sense that it uses the pair-
wise similarity. We utilize the inconsistency measure as in
graph-based methods using an exponential form of it.

The cluster assumption says that the data space consists of a
number of clusters and if points are in the same cluster, then they
likely belong to the same class. The cluster assumption thus says

that the decision boundary should lie in a low-density region
(Chapelle et al., 2006). In other words, the cluster assumption
emphasizes that the examples being in very dense regions of the
feature space are likely to share the same class label, see Fig. 1.
Many successful semi-supervised learning methods are based on
this assumption, such as Semi-Supervised SVM (Bennett and Dem-
iriz, 1999), low density separation (Chapelle et al., 2006), and
Transductive SVM (Joachims, 1999). These methods basically ex-
tend the SVM classifier to semi-supervised learning, and are not
easily extensible to non-margin based learners such as decision
trees (Mallapragada et al., 2009).

Another dimension of the semi-supervised learning methods –
especially for those that are based on cluster assumption – is
whether they perform iterative or additive improvement. Iterative
improvement algorithms (e.g. self-training Rosenberg et al., 2005
and co-training Blum and Mitchell, 1998) replace their hypothesis
at each iteration by a new one. Additive algorithms add a new
component to a linear combination of classifiers as in boosting
algorithms (Freund and Schapire, 1996). Boosting is one of the
most successful ensemble methods for supervised learning. It has
been extended to semi-supervised learning, e.g. MarginBoost
(dAlché Buc et al., 2002) and ASSEMBLE (Bennett et al., 2002).
MarginBoost and ASSEMBLE use a base classifier to predict class
labels of the unlabeled examples, the ‘‘pseudo-labels’’. A sample
of the pseudo-labeled data is then used in the next iteration. The
main difficulty in this approach is how to assign pseudo-labels to
the unlabeled data and then how to sample from them. These
algorithms typically attempt to minimize the margin cost of the
labeled data and a cost associated with the ‘‘pseudo-labels’’ of
the unlabeled data. The pseudo-labels and also the associated cost
depend strongly on the classifier predictions. Therefore, this type
of algorithm cannot effectively exploit information from the
unlabeled data and the final decision boundary will be very close
to that of the initial classifier, see Chen and Wang (2011) and
Mallapragada et al. (2009).

To solve the above problem, a recent approach is to use a
smoothness regularizer based on the cluster and the manifold
assumptions. The idea is to not use the ‘‘pseudo-margin’’ from
the predictions of the base learner directly. Instead, beside the
margin on the labeled data, also the ‘‘consistency’’ is maximized.
Consistency is a form of smoothness. Class labels are consistent if
they are equal for data that are similar. For this the computation
of the weights for data and for classifiers in the boosting algorithm
must be modified. This is done in SemiBoost (Mallapragada et al.,
2009) and RegBoost (Chen and Wang, 2011). Experiments show

Fig. 1. The positive and negative signs show labeled examples from two different classes. The circles depict the unlabeled examples. The dashed line for decision boundary is
obtained by only training on labeled examples and usually crosses the dense regions of the feature space. These decision boundaries are moved to regions with lower density
(solid line) using unlabeled data.
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