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a b s t r a c t

In multi-instance multi-label (MIML) learning, datasets are given in the form of bags, each of which con-
tains multiple instances and is associated with multiple labels. This paper considers a novel instance clus-
tering problem in MIML learning, where the bag labels are used as background knowledge to help group
instances into clusters. The goal is to recover the class labels or to find the subclasses within each class.
Prior work on constraint-based clustering focuses on pairwise constraints and cannot fully utilize the
bag-level label information. We propose to encode the bag-label knowledge into soft bag constraints that
can be easily incorporated into any optimization based clustering algorithm. As a specific example, we
demonstrate how the bag constraints can be incorporated into a popular spectral clustering algorithm.
Empirical results on both synthetic and real-world datasets show that the proposed method achieves
promising performance compared to state-of-the-art methods that use pairwise constraints.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The multi-instance multi-label (MIML) learning framework
(Zhou and Zhang, 2007) has been successfully applied in a variety
of applications including computer vision (Feng and Xu, 2010; Xue
et al., 2011; Zha et al., 2008) and audio analysis (Xu et al., 2011). In
MIML, datasets are given in the form of bags and each bag contains
multiple instances. It is assumed that there exists a class structure
such that each instance in the bag belongs to one of the classes.
However, the instance class labels are not directly observed. In-
stead, the class labels are only provided at the bag level, which is
the union of all instance labels within the bags. The goal of MIML
learning is then to build a classifier to predict the labels for an un-
seen bag (Zhang and Zhou, 2008; Zhou and Zhang, 2007) or to
annotate the label of each instance within the bag (Briggs et al.,
2012).

In this paper, we consider a novel instance clustering problem
within the MIML framework, where the goal is to group instances
from all bags into clusters. In particular, we seek to find a cluster
structure that corresponds to or refines the existing class structure.
That is, we assume that each class contains one or more subclasses
and our goal is to find such subclasses via clustering. In our moti-
vating application, we want to understand the structure of bird
song within each species. Here a bag corresponds to the spectro-
gram of a 10-s field recording of multiple birds, and each instance
corresponds to a segment in the spectrogram capturing a single

bird utterance (a syllable). The labels of a bag are the set of species
(one or more) present in the recording. Birds from a single species
may vocalize in different modes. For instance, the sound made by a
woodpecker has at least two distinct modes: pecking and calling.
We are interested in finding such distinct modes within each spe-
cies by applying clustering techniques to instances. Ideally we
would perform clustering on instances of the same species to learn
such modes. However, this is impractical because the labels are
only provided at the bag level and we do not have accurate in-
stance-level species labels. Therefore, we cast this problem as an
instance clustering problem with bag-level class labels as side
information.

Existing literature on clustering with side information primarily
focuses on pairwise Must-Link (ML) and Cannot-Link (CL) con-
straints (Ji and Xu, 2006; Kamvar et al., 2003; Kulis et al., 2009;
Wang et al., 2009; Wang and Davidson, 2010; Yu and Shi, 2001,
2004). Note that one could potentially generate ML and CL con-
straints based on the bag-level labels, but they incorporate only lim-
ited information for MIML datasets (as will be discussed in
Section 4.3) and are not effective for our problem. Another closely
related topic is MIML instance annotation (Briggs et al., 2012; Yang
et al., 2010; Zha et al., 2008), where an instance classifier is learned
from MIML data that predicts the class label of each instance. The
key difference between MIML instance annotation and our work is
that we are interested in finding the refinement of class structure
for the instances, whereas instance annotation only focuses on
recovering the class labels of instances based on the bag-level labels.

In this paper, we propose to incorporate the bag-level side
information in the form of bag constraints. Our approach defines
two similarity measures between bags based on class labels and
cluster labels respectively. By requiring the two similarities to
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order pairs of bags consistently, we encode bag-level label knowl-
edge into soft constraints, which can be easily incorporated into
traditional clustering objectives as a penalty term. In particularly,
we incorporate such constraints into a popular spectral clustering
algorithm and validate the effectiveness of the resulting method on
both synthetic and real-world datasets. Experiments show that our
method produces good clustering results compared to spectral
clustering methods with pairwise constraints.

2. Problem statement

In our problem, the data consists of M bags fB1; . . . ;BMg, where
each bag Bi contains ni instances, i.e., Bi ¼ fxi1; . . . ; xini

g with
xiq 2 Rd. As prior knowledge, each Bi is associated with a set of
class labels, denoted by Yi # f1; . . . ;Cg, where C is the total number
of distinct classes. Denote X ¼

SM
m¼1Bm and let N ¼

PM
m¼1nm be the

total number of instances1 in X , our goal is to partition the N in-
stances in X into K disjoint clusters that respect the class boundaries.
That is, if xp and xq belong to the same cluster, they must belong to
the same class, while the converse is true only if K ¼ C, in which case
we wish to recover the classes perfectly by clustering. In the case of
K > C, some classes may contain multiple clusters that correspond to
subclasses of the existing classes.

3. Bag constraints for MIML instance clustering

In our setup, the desired cluster labels are closely related to the
class labels. To capture this relationship, we introduce two differ-
ent representations for each pair of bags using their class-label
set and cluster-label set respectively, and require these two repre-
sentations to induce similarities that behave similarly in terms of
their ranking orders. That is, if a pair of bags Bi and Bj is more sim-
ilar to each other than another pair Br and Bs according to their
class labels, the similarity should maintain the same order when
measured using cluster labels. This will allow us to find a clustering
solution that implicitly respects the class labels.

More formally, we use ði; jÞ to represent a pair of bags Bi and Bj.
Let XLði; jÞ be the class-label similarity between Bi and Bj, and let
XAði; jÞ be their cluster-label similarity.2 Conceivably, a good cluster-
ing result is such that a large value of XLði; jÞ corresponds to a large
value of XAði; jÞ. For example, for a pair of bags Bi and Bj with a cer-
tain number of class labels, the more class labels they share, the lar-
ger the value XLði; jÞwill be and correspondingly we expect the value
XAði; jÞ to be larger.

Using the above defined notation, we introduce the bag con-
straints as follows:

½XLði; jÞ �XLðr; sÞ�½XAði; jÞ �XAðr; sÞ�P 0; 8i; j; r; s 2 f1; . . . ;Mg
ð1Þ

The first term on the left hand side of the above inequality compares
the difference of class-label similarities between ði; jÞ and ðr; sÞ. The
second term computes the corresponding difference of the cluster-
label similarities. By requiring the nonnegativity of the product,
the inequality requires the two similarities to consistently order
any pairs of bags. In this way, the bag constraints indirectly enforces
the consistency between class labels and cluster labels for all bags.

The above bag constraints can be easily incorporated into any
optimization based clustering algorithm. Let fA be the objective
to be maximized by a clustering algorithm, the bag constraints
can be incorporated as

max
A

f A þ
a

2M2

X
ði;jÞ

X
ðr;sÞ
½XLði; jÞ �XLðr; sÞ�½XAði; jÞ �XAðr; sÞ� ð2Þ

where M is the total number of bags, 2M2 is introduced as a normal-
izer to make a invariant to different number of bags, and the param-
eter a controls the trade-off between the bag constraints and the
original clustering objective.

4. Incorporate bag constraints to spectral clustering

In this section, we incorporate the bag constraints into spectral
clustering by modifying the Normalized LinkRatio objective. We
show that this leads to a standard spectral clustering problem with
a modified similarity matrix.

4.1. Preliminaries on spectral clustering

We first briefly review the spectral clustering. Let A ¼ ½a1; . . . ; aK �
be a partition matrix, where each column ak is a binary assignment
vector for cluster Xk, with aqk ¼ 1 if instance xq is assigned to cluster
Xk and 0 otherwise. Let W be the symmetric similarity matrix of in-
stances. Define the degree matrix D ¼ DiagðW1NÞ, where Diagð�Þ
forms a diagonal matrix with elements of the input vector as the
diagonal elements, 1N denotes a N-dimensional vector of all 1’s,
and N is the total number of vertices. The K-way spectral clustering
with Normalized LinkRatio objective is defined as (Yu and Shi, 2003)

max
A

1
K

XK

k¼1

aT
k Wak

aT
k Dak

ð3Þ

s:t: A 2 f0;1gN�K
; A1K ¼ 1N ð4Þ

Rewrite the objective as 1
K

PK
k¼1

aT
i

Wai

aT
i

Dai
¼
PK

k¼1
aT

k
D1=2D�1=2WD�1=2D1=2ak

aT
k

Dak
.

Define zk ¼ D1=2ak

kD1=2aT
k
k, and Z ¼ ½z1; . . . ; zK �. Ignoring the discrete con-

straint for Z at this stage, one can formulate a new clustering
problem with respect to variable Z as

max
Z

trðZT D�1=2WD�1=2ZÞ ð5Þ

s:t: ZT Z ¼ I ð6Þ

where the constraint (6) comes from the definition of Z. The solu-
tion of Z for this new problem is the eigenvectors associated with
the K largest eigenvalues of D�1=2WD�1=2 (Chung, 1997). Corre-
spondingly, a discrete solution A of the original problem can be ob-
tained by taking a rounding procedure from Z (e.g., using Kmeans or
the approach proposed in Yu and Shi (2003)).

4.2. Spectral clustering with bag constraints

To incorporate the bag constraints, we need to define the two
similarity functions in Eq. (1), the class-label similarity function
XLð�Þ and the cluster-label similarity XAð�Þ. Ideally, XLð�Þ should sat-
isfy the following conditions: (1) In the case where class label
information between two bags Bi and Bj is unambiguous, i.e., they
do not share class label or they both belong to the same single
class, XLði; jÞ should achieve minimum or maximum values; (2) In
the ambiguous case where bags Bi and Bj have multiple labels
and Yi \Yj – /, the smaller the quantity jYi\Yj j

jYi[Yj
j (jYij is the number

of distinct classes in Yi) is, i.e., the smaller the relative ‘‘common-
label’’ set is, the smaller XLði; jÞ should be.

Based on the above considerations, we define the following
class-label similarity function. Let yi be the C � 1 binary class indi-
cator vector for bag Bi, with elements yic ¼ 1=jYij if c 2 Yi, and
yic ¼ 0 otherwise. Denote Y ¼ ½y1; . . . ; yM �, where ym ¼ 0 for any
bag Bm that is not labeled. The class-label similarity between ði; jÞ
is defined as

1 In this paper, we assume that all instances are distinct.
2 At this point, we do not specify the function forms of XLð�; �Þ and XAð�; �Þ, since they

can be problem-specified. However, this does not prevent us from viewing them as
geometrical similarities.

108 Y. Pei, X.Z. Fern / Pattern Recognition Letters 37 (2014) 107–114



Download English Version:

https://daneshyari.com/en/article/534548

Download Persian Version:

https://daneshyari.com/article/534548

Daneshyari.com

https://daneshyari.com/en/article/534548
https://daneshyari.com/article/534548
https://daneshyari.com

