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In multi-view learning, a classifier for different partitions (views) of the feature vector is commonly
sought after. We consider the special case of surrogate supervision multi-view learning in which a
classifier for one view is sought after, however, no labeled examples are available for that view. Instead,
the training set consists of only labeled examples for the other view as well as unlabeled two-view data.
While it is straightforward to train and test a classifier in the labeled view, it is challenging to perform the
same task in the view where labels are unavailable. To solve this problem, we introduce an upper bound
on the classical hinge loss (commonly used in support vector machines) that is well suited for the surro-
gate supervision multi-view learning setup. The bound only requires labeled examples from the other
view and unlabeled examples of the two views. Using this approach, we introduce the surrogate super-
vision multi-class support vector machine (SSM-SVM). We evaluate the algorithm and compare it to
other algorithms on a collection of datasets. We present an application of the algorithm to lip reading
using audiovisual dataset.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In multi-view learning a classifier for different partitions
(views) of the feature vector is commonly sought after. Several
problems are cast in the multi-view learning setting. Co-training
is a semi-supervised multi-view learning technique directed at
improving performance of a learning algorithm by expanding
labeled training data using information from multiple views
(Nigam and Ghani, 2000). For example, in Blum and Mitchell
(1998) a set of labeled two-view examples and a set of unlabeled
two-view examples are available. An assumption in Blum and
Mitchell (1998) is that data from each of the views is sufficient
for training an accurate classifier if labeled data are sufficient on
both views. In transfer learning, the goal is to improve the classifi-
cation performance on the target view using information from the
auxiliary view (Pan et al., 2010). The regularized multi-task learn-
ing is a special case of transfer learning, where labeled data are
available on both views (Evgeniou et al., 2006). The regularized
multi-task learning algorithm transfers information from the aux-
iliary view to the target view to improve classification performance
on the target view (Evgeniou et al., 2006).

In this work, we solve a novel multi-view learning
problem - surrogate supervision multi-view learning (SSML) (Jin
and Raich, 2012). In SSML, labeled data are available for only one
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view and unlabeled pairs are available for both views. The goal is
to obtain a classifier on the view for which only unlabeled data
are available. An important characteristic that distinguishes the
SSML problem from other problems in the multi-view setting
(e.g., co-training, multi-task leaning) is that in SSML the training
of the desired view cannot be accomplished without information
from the auxiliary view. Surrogate supervision multi-view learning
can be applied in many areas. For example, classification of the
same documents of different languages. Another example is the
application to audiovisual data where video and audio are consid-
ered as two views. An intuitive solution to the SSML problem is to
learn a classifier from one view and map it to the other view by learn-
ing the relationship between the two views through the unlabeled
pairs. The canonical correlation analysis (CCA) technique can be used
to obtain mapping from both views to a common representation
space (Ngiam et al., 2011). Although this problem is fairly new,
existing research in multi-view learning addresses similar issues.
For example, the kernelized version of CCA (KCCA) is used in
Vinokourov et al. (2003) and Li and Shawe-Taylor, 2006 to find
the relationship between the same documents represented by different
languages. One of the challenges with the aforementioned
approach is that the components that are most correlated across
views found by CCA are not necessarily optimal for classification.
In Farquhar et al. (2005), the SVM-2 K algorithm combining the
relationship (between views) learning stage and the classifier
training stage into one is proposed. The experimental results show
that the SVM-2 K algorithm outperforms the KCCA + SVM method.
Counter to the setting in our paper, Farquhar et al. (2005) assumes
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that the labeled data are available on both views. In addition
Farquhar et al. (2005) does not give a solution to the multi-label
classification problem.

The key difference between the problems addressed by this
work to common multi-view learning problem is the availability
of labels. In Blum and Mitchell (1998) a standard multi-view ap-
proach is taken with the assumption that a good classifier can be
obtained from either view and their focus is how to combine infor-
mation from both views. However, the problem in this paper as-
sumes that no labeled examples are available for the desired
view, that is, without information from the other view where la-
beled examples are available the classifier learning task (for the la-
bel-free view) will never be achieved. As a consequence,
algorithms such as SVM-2 k or co-training which require labeled
examples from both views need to be modified. Another issue is
that the tuning of such algorithms cannot be done to optimize per-
formance with respect to the desired view classifier, since no la-
beled examples from this view are available.

The contributions in this paper are as follows: (1) an SSML
bound for the SVM hinge loss is derived for the binary classification
problem; (2) we provide theoretical performance guarantees for a
binary classifier obtained by minimizing the proposed bound; (3)
an SSML bound for the SVM hinge loss is derived for the multiclass
classification problem; (4) the SSM-SVM algorithm is proposed to
solve the multi-class SSML problem; (5) SVM-2 k and co-regulari-
zation are modified for the SSML scenario; and (6) numerical eval-
uations are provided to analyze the performance of the proposed
SSM-SVM and compare it with the performance of other algo-
rithms including CCA+SVM, label-transferred learning, C*A,
SVM-2 k, and co-regularization.

In Section 2, we introduce the formulation of the SSML problem.
Furthermore, we present a novel upper bound replacing SVM hinge
loss for standard classification with its SSML counterpart and in-
clude theoretical performance guarantees on the classifier ob-
tained by minimizing the proposed bound. In Section 3, we
present the SSM-SVM algorithm based on the upper bound.
Numerical evaluation of the algorithm is given in Section 4. Finally,
Section 5 summarizes the paper.

2. Hinge loss upper bound for SSML

In this section, we introduce the setting of SSML. We then pro-
ceed with the derivation of the hinge loss upper bound for the bin-
ary-class case and extend the result to the multi-class case. For the
binary classification case, we present theoretical performance
guarantees on the classifier obtained by minimizing the upper
bound.

2.1. Surrogate supervision multi-view learning

In a two-view learning scenario (a special case of multi-view
learning), data can be represented as a set of triplets:
{(xi,z1,¥))}1,, where x;€ X, zz€ Z are the two views, and
y; € Y={1,2,...,K} is the label. Surrogate supervision multi-view
learning deals with the case where labels y; are never directly pro-
vided for z;. Instead, we are given two independent sets of data
{(x;,z))}1, and {(x;,¥;)}] .., and are interested in learning a classi-
fier for y given z. Note that the two training sets are independent
and hence not even a single triplet is available for training. The sur-
rogate supervision multi-view learning is different from other
standard multi-view learning settings (e.g. in Farquhar et al.,
2005; Evgeniou et al., 2006, an assumption of the latter is that
the labeled data are available on both views). One challenge of
the SSML setting is to obtain the mapping form Z to ) without a
single example of the form (z;,y;). Additionally, cross-validation

to determine the unlabeled view classifier parameters which min-
imize the empirical risk cannot be performed. The calculation of
the risk requires labels from the desired view which are unavail-
able in the SSML setting.

2.2. Bounding the hinge loss: the two-class case

We start with the binary-class case. In classification, the goal is
to minimize the following classification error objective with
respect to g(-):

Eo 5180 -3 )

where g(-) : X — Y is a decision function mapping feature space X
to a label in Y = {1,-1}. A common approach (e.g., in SVMs) is to
replace the 0-1 loss in (1) with a hinge loss:

E.y[(1-8(2)y).), (2)

where (t), = max{0, t}. In SVM, a classifier is obtained by minimiz-
ing the regularized sample based objective:
150101 — g(z)y;),] + Pen(g), where Pen(g) denotes a regularization
term. For example, in a linear SVM g(z) = w'z, the regularization
term is Pen(g) :%HWHZ. In the SSML scenario, labeled examples
are only available for samples from . In the absence of examples
of the type (z;,y;), one cannot compute directly the classifier which
minimizes (2) or its regularized sample-based alternative.

Naturally, in SSML, we can only deal with objectives that are
based on samples of the type (x;,¥;) and (x;,z) or equivalently
objectives that require the joint distributions of (x,y) and (x,z).
This leads us to considering an upper bound approach to a surro-
gate objective. Consider the following upper bound to (2):

Ey[(1-g(2)y),] < Exy[(1 — h(x)y),] + Ex.[|h(x) — g(2)]], 3)

where h(-) : X — Y is a classifier mapping feature space X to a sur-
rogate objective on ). For a proof of (3), we refer the reader to
Appendix A. The right-hand side (RHS) of (3) consists of two terms.
The first is a hinge-loss for the classifier h(-) measuring how well
h(-) can predict the label y, while the second term measures how
close are the predictions of the two classifiers g(-) and h(-). Note that
the LHS cannot be empirically evaluated since no labeled examples
of the type (z,y) are available. However, the RHS which requires
only pairs of the type (x,y) and (x,z) can be empirically evaluated.
Hence the RHS can be used as a realizable bound for the SVM
hinge-loss on the LHS of (3). In other words, the objective on the
RHS of (3), promotes a classifier h(-) on X which can simultaneously
predict y and can be well-approximated by a classifier g(-) on Z.
Note that since the bound holds for any h(-), the bound can be tight-
ened by minimizing the RHS w.r.t. h(-). This bound suggests the
replacement of the hinge loss in one view with the hinge loss in
the other view plus a multi-view classifier mismatch term. Next,
we present a theorem which examines the performance achieved
by using the RHS of (3) as a surrogate for the original SVM hinge
loss.

Theorem 1. Let h(x) and g(z) be classifiers X — Y and Z — ),
respectively. Define the correlation distance between classifiers h(x)
and g(z) as d(g,h) = E[|h(x) — g(z)|]. We denote § and h as the
minimizers of the RHS of (3). Similarly, we denote g* as the minimizer
of the SVM hinge loss term in (2). The loss achieved by
g, E[(1-g(z,y)),] is bounded using the following two-sided
inequality:

E[(1-g(2)y).] <E(1-2(2)y).] <o +E[(1-g2)y).] (4)

where 6 = max,mingE[|g(z) — h(x)|] + max;min,E[|g(z) — h(x)]].
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