
Combination of supervised and unsupervised learning for training the
activation functions of neural networks

Ilaria Castelli, Edmondo Trentin ⇑
Dipartimento di Ingegneria dell’Informazione, Università di Siena, Via Roma 56, 53100 Siena, Italy

a r t i c l e i n f o

Article history:
Available online 26 June 2013

Keywords:
Adaptive activation function
Co-training
Partially supervised learning

a b s t r a c t

Standard feedforward neural networks benefit from the nice theoretical properties of mixtures of sigmoid
activation functions, but they may fail in several practical learning tasks. These tasks would be better
faced by relying on a more appropriate, problem-specific basis of activation functions. The paper presents
a connectionist model which exploits adaptive activation functions. Each hidden unit in the network is
associated with a specific pair ðf ð�Þ;pð�ÞÞ, where f ð�Þ is the activation function and pð�Þ is the likelihood
of the unit being relevant to the computation of the network output over the current input. The function
f ð�Þ is optimized in a supervised manner, while pð�Þ is realized via a statistical parametric model learned
through unsupervised (or, partially supervised) estimation. Since f ð�Þ and pð�Þ influence each other’s
learning process, the overall machine is implicitly a co-trained coupled model and, in turn, a flexible,
non-standard neural architecture. Feasibility of the approach is corroborated by empirical evidence
yielded by computer simulations involving regression and classification tasks.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Artificial neural networks (ANN) have long been a popular ap-
proach to a number of machine learning problems, especially clas-
sification and regression tasks. In particular, the popular multilayer
perceptron (MLP) with a single hidden layer of sigmoid units and
linear output(s) is a ‘‘universal’’ approximator (Cybenko, 1989).
Formally, given any continuous and limited function uð�Þ defined
on a compact subset of Rd, such an MLP exists which realizes a
function ~uð�Þ whose Chebyshev distance from uð�Þ is smaller than
� 2 Rþ, for any arbitrarily small value of �.

Unfortunately, this theoretical property is of little practical
relevance. In fact, it does not specify the right architecture
(and, parameters) of the proper MLP (also, it does not tell any-
thing on the actual convergence of the learning process). More-
over, as shown in Bengio (2009), it might as well be that the
number of sigmoid units required in order to guarantee the
approximation of uð�Þ could be as huge as to cause severe prob-
lems during training (e.g., computational and/or numerical prob-
lems, entrapment within local minima), as well as limited
generalization capability (due to the complexity of the resulting
learning machine), while just a few activation functions of suit-
able form could fit uð�Þ.

These are some of the reasons why several scientists have be-
gan developing the so-called ‘‘deep architectures’’ (Bengio, 2009),
i.e. ANNs having a large number of hidden layers which basically
realize the progressive composition of nonlinear transformations
over the original input. The alternative idea pursued herein is
that such difficulties might be tackled by means of smaller archi-
tectures, provided that the right, problem-specific activation
functions are chosen. Furthermore, these functions could even
be neuron-specific, and they are better autonomously learned
from examples by the machine. To this end, in this paper we
discuss and expand the neural model that we introduced in Cas-
telli and Trentin (2012) and Castelli and Trentin (2012), called
trainable-activations multilayer perceptron (TA-MLP). The TA-
MLP is a simple ANN whose activation functions are adaptive
and realize (quasi) arbitrary functions (as long as these functions
are continuous and limited over a closed domain). Eventually,
many-layer versions of the TA-MLP turn out to be deep architec-
tures themselves.

Although the literature on ANNs has mostly focused on learn-
ing the connection weights, several techniques have long been
proposed for learning parameters that characterize the sigmoidal
activation functions. Major instances are represented by: the
usual, neuron-specific learning of the bias (Hertz et al., 1991);
learning the slope (Yamada and Yabuta, 1992) or the smoothness
(Hu and Shao, 1992) of sigmoids (shared among all the neurons
in the ANN); learning the amplitude, i.e. the range, of (neuron-
specific, or shared) sigmoids (Trentin, 2001). In Chen and Chang
(1996) a custom sigmoid with neuron-specific adaptive

0167-8655/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.patrec.2013.06.013

⇑ Corresponding author. Tel.: +39 0577 234636; fax: +39 0577 233602.
E-mail address: trentin@dii.unisi.it (E. Trentin).
URL: http://www.dii.unisi.it/~trentin (E. Trentin).

Pattern Recognition Letters 37 (2014) 178–191

Contents lists available at SciVerse ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec

http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2013.06.013&domain=pdf
http://dx.doi.org/10.1016/j.patrec.2013.06.013
mailto:trentin@dii.unisi.it
http://www.dii.unisi.it/~trentin
http://dx.doi.org/10.1016/j.patrec.2013.06.013
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


parameters controlling its ‘‘shape’’ is introduced in the output
layer of the ANN. Finally, the idea of learning the activation
functions relying on Catmull-Rom splines is exploited in Vecci
et al. (1998). That approach leads to a reduction in terms of
model complexity, at the expense of a reduced approximation
capability (due to the constraints imposed on the number of hid-
den units).

The alternative solution proposed herein goes as follows. First
of all, training a TA-MLP involves applying backpropagation (BP)
(Duda et al., 2001) to a standard MLP (the outer network), having
a (possibly, small) number m of hidden sigmoids. BP training of
the outer ANN is iterated until the generalization error (as evalu-
ated on a validation set) does not improve any longer. The sigmoids
associated with the hidden units of the outer ANN are then re-
placed by individual MLP architectures (the inner networks). The
inner ANNs are then trained to realize the corresponding unit-spe-
cific activation functions, aiming at contributing to the solution of
the learning problem at hand. The overall model results in a non-
standard, not fully connected topology. The architectures of the in-
ner networks within the TA-MLP, determined via any model selec-
tion strategy (Claeskens and Hjort, 2008), may as well differ from
each other. It is worth noticing that using activation functions
realized via connectionist models will not affect the overall capa-
bility of the ANN of being a ‘‘universal approximator’’, due to the-
oretical results drawn from the investigation of non-sigmoid
activation functions (Stinchcombe and White, 1989; Chen and
Chen, 1995).

Each activation function (i.e., each inner ANN) may be special-
ized over the input space by means of a well-defined probabilistic
criterion. The latter shall be a reasonable, quantitative measure of
the impact any specific unit in the model is expected to have on the
whole ANN computation when presented with any given input
vector. Formally, the generic hth hidden unit in the ANN is associ-
ated with a pair ðfhð�Þ; phð�ÞÞwhere fhð�Þ is the unit-specific, adaptive
activation function, while phð�Þ is the corresponding probabilistic
measure. The latter is the likelihood of the unit being relevant to
the TA-MLP output given its current input (or, any meaningful like-
lihood-related measure of the kind). This probabilistic measure af-
fects the training algorithm, since the weights of the hth inner ANN
undergo modifications whose magnitude is related to the value of
phð�Þ over the current input. In a similar manner, it is involved also
in the feed-forward (i.e., test) phase of a trained TA-MLP, since it
determines (on a pattern by pattern basis) the contribution each
inner net provides to the overall TA-MLP output. It turns out that
the estimation of phð�Þ may take a variety of forms, either entirely
unsupervised or partially supervised.

The unit-specific likelihood measure phð�Þ associated with fhð�Þ
affects its optimization and its contribution to the computation
of the ANN outputs. A co-training procedure of a supervised model
fhð�Þ and a (partially) unsupervised model phð�Þ this way emerges.
To all practical ends, the underlying idea is that phð�Þ forces fhð�Þ
to focus on input patterns that are likely to be drawn from a spe-
cific probability distribution (while standard, supervised-only
backpropagation implicitly assumes a uniform distribution over
all input patterns), simplifying the learning task by reducing it to
easier sub-tasks whose support is homogeneous (insofar that it
presents certain regularities, s.t. it is well described via a probabil-
ity density function having known form).

Since the technique does not rely on straightforward backprop-
agation of the partial derivatives of the error function w.r.t. the
parameters (as in BP), it does not suffer from the phenomenon of
‘‘vanishing gradient’’ which may be met in standard multilayer
networks (Bengio et al., 1994).

The training algorithm is presented in detail in the next section,
including a variety of likelihood-related probabilistic measures. At
first we assume that the outer ANN has only one hidden layer,

while the extension of the algorithm to multi-layer architectures
is presented in Section 3. A straightforward, alternative application
of the training algorithms in conjunction with the simultaneous
learning of the weights of the outer ANN is presented in Section 4.
Empirical evidence is presented eventually (in Section 5) that the
TA-MLP may improve over the standard MLP (and, over statistical
techniques) in classification and regression tasks, possibly requir-
ing a smaller number of free parameters. Section 6 draws the con-
clusive remarks.

2. Training algorithm for 1-hidden layer TA-MLPs

In the following, a supervised training set is assumed, having
the usual form D ¼ xk; ŷk

� �
; k ¼ 1 . . . N

� �
where xk 2 Rd is a feature

vector and ŷk 2 Rn is the corresponding target output. A gradient-
descent algorithm (such as BP) is used in order to minimize the cri-
terion function

CðwÞ ¼ 1
2

XN

k¼1

Xn

i¼1

ŷk
i � yk

i

� �2 ð1Þ

where w denotes the (set of all the) connection weights in the TA-
MLP, while ŷk

i and yk
i are the ith component of the target and the TA-

MLP output over the k-th input pattern, respectively. If the TA-MLP
has ‘ layers, namely L0 (the input layer, which is not counted),
L1; . . . ; L‘�1 (the hidden layers), and L‘ (the output layer), we will
write i 2 Ll to denote the i-th unit in layer Ll.

The generic hth unit in layer Ll receives an input (namely, its
activation ah) given by ah ¼

P
j2Ll�1

ojwhj, where oj is the output of
unit j 2 Ll�1 and whj is the connection weight from unit j to unit
h. The output oh yielded by the hth unit is computed applying an
activation function fhð�Þ to ah, namely oh ¼ fhðahÞ.

In order to train the (generic) hth inner network, h ¼ 1; . . . ;m, a
training set Dh ¼ xk

h; ô
k
h

� �
; k ¼ 1; . . . ;N

� �
is needed (note that xk

h and
ôk

h are both scalar quantities). Section 2.1 elaborates on how Dh can
be generated. The probabilistic techniques presented in section 2.2
are then applied for weighting individual input patterns for each of
the inner networks. This weighting is used in training the inner
ANNs, and in testing the resulting TA-MLP (contribution from each
hidden neuron to the overall TA-MLP output is weighted accord-
ingly). Maximum-likelihood methods for the estimation of the
quantities involved in the probabilistic weighting scheme are out-
lined in Section 2.3.

2.1. Generation of locally-supervised training sets

In order to define Dh ¼ xk
h; ô

k
h

� �
; k ¼ 1; . . . ;N

� �
, the kth input xk

h

for the hth inner network can be generated by relying on the acti-
vation ah for unit h over the current pattern xk, namely xk

h ¼ ah.
More effort is required in order to define the corresponding target
output ôk

h. The supervision is available only at the output layer of
the outer network, then it is necessary to define a strategy to
back-propagate the target. For each output unit i of the outer net,
and for each pattern k, values of ôk

h are sought that satisfy the fol-
lowing equation:

ŷk
i ¼ fi

Xm

h¼1

ôk
hwih

 !
: ð2Þ

First of all, we compute the target activations âi of the output units
of the outer network, by inversion of their activation functions. In
both cases of linear or sigmoidal activation function, calculating
the corresponding inverse is straightforward. In the former case
we aim at target activations such that ŷi ¼ fiðâiÞ which, since
fiðâiÞ ¼ âi, is satisfied by defining âi as âi ¼ ŷi. If the activation is a
sigmoid, then ŷi ¼ 1=ð1þ expð�âiÞÞ is sought, thence we let

I. Castelli, E. Trentin / Pattern Recognition Letters 37 (2014) 178–191 179



Download	English	Version:

https://daneshyari.com/en/article/534556

Download	Persian	Version:

https://daneshyari.com/article/534556

Daneshyari.com

https://daneshyari.com/en/article/534556
https://daneshyari.com/article/534556
https://daneshyari.com/

