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a b s t r a c t

In this paper, we propose a Laplacian minimax probability machine, which is a semi-supervised version of
minimax probability machine based on the manifold regularization framework. We also show that the
proposed method can be kernelized on the basis of a theorem similar to the representer theorem for
non-linear cases. Experiments confirm that the proposed methods achieve competitive results, as com-
pared to existing graph-based learning methods such as the Laplacian support vector machine and the
Laplacian regularized least square, for publicly available datasets from the UCI machine learning
repository.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The objective of semi-supervised learning is to utilize many
unlabeled samples coupled with a few labeled samples to improve
the generalization performance of a learned model. Recently, many
semi-supervised learning methods have been proposed from dif-
ferent viewpoints, such as density-based, cluster-based or graph-
based (e.g., Belkin et al., 2006; Bousquet et al., 2004; Chapelle
and Zien, 2005;Sindhwani et al., 2005; Zhu et al., 2003), and corre-
spondingly, by formulating different forms of loss function and/or
regularization terms based on original optimization problems.

In most of these proposals, existing learning methods have been
extended for use in semi-supervised settings. We follow these ap-
proaches to extend the minimax probability machine (MPM) to a
semi-supervised framework (Yoshiyama and Sakurai, 2012), and
we propose a Laplacian minimax probability machine (Lap-MPM)
by adopting graph-based regularization as explained in (Belkin
et al., 2006), which leads to explicit modification of the MPM bias
with the square root of a graph-based regularization term. In addi-
tion, we show that the proposed Lap-MPM can be suitably kernel-
ized for non-linear cases.

Our experiments show that the proposed methods achieve
competitive results, as compared to existing graph-based semi-
supervised methods, i.e., the Laplacian regularized least-square
(Lap-RLS) and the Laplacian support vector machine (Lap-SVM),
using 20 benchmark datasets from the UCI machine learning
repository.

The remainder of this paper is organized as follows. In Section 2,
we review related studies, and we present MPM, Lap-RLS, and

Lap-SVM, which constitute the basis of the proposed method. In
Section 3, we describe an approach for extending MPM to a
semi-supervised framework, and we show that it can be suitably
kernelized for non-linear cases. In Section 4, we discuss the com-
putational complexity of our proposed algorithm to solve
Lap-MPM with the algorithms to solve Lap-SVM. In Section 5, we
present the empirical results of our experiments, and we compare
the proposed method with existing semi-supervised methods, i.e.,
Lap-SVM and Lap-RLS. In Section 6, we discuss relevant issues and
state our conclusion.

2. Related work

In Section 2.1, we summarize MPM (Lanckriet et al., 2002), in
Section 2.2, we review the regularization framework (Belkin
et al., 2005) and mention other graph-based methods.

2.1. Minimax probability machine

As in (Lanckriet et al., 2002), consider the set of hyperplanes
Hða; bÞ ¼ faT z � b ¼ 0ja; z 2 Rd; b 2 Rg that hopefully separate
two classes X and Y with maximum lowerbound of worst-case
correct classification probability. MPM maximizes a, a lower bound
of membership probability to each class with respect to all distri-
butions having the prescribed means and covariance matrices. This
is expressed as

max
a;a–0;b

a s:t: inf
x�ðx;RxÞ

PrfaT x P bgP a;

inf
y�ðy;RyÞ

PrfaT y 6 bgP a;
ð1Þ

where ðx;RxÞ refers to the class of distributions having prescribed
mean x and covariance Rx, but are otherwise arbitrary; likewise
for y. By exploiting the Marshall–Olkin Theorem (Bertsimas and
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Popescu, 2005; Lanckriet et al., 2002), the optimization problem (1)
can be rewritten as

max
a;a–0;b

a s:t: aT yþjðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aTRya

q
6 b6aT x�jðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aTRxa

p
; ð2Þ

where jðaÞ ¼
ffiffiffiffiffiffiffia
1�a

p
. Since maximizing a is equivalent to maximiz-

ing jðaÞ, we can maximize j without considering a. Furthermore,
the upper and lower bound of b in (2) are monotonically and
unboundedly decreasing and increasing function of j respectively.
Thus, we can eliminate b at the optimum, which converts (2) into
the following optimization problem:

max
j; a–0

j s:t: aT x� yð ÞP j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aTRxa

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aTRya

q� �
: ð3Þ

If x ¼ y; j ¼ 0. In this case, MPM does not have a meaningful
solution. Assuming x – y, we get a – 0 andffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aTRxa
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aTRya

p� �
– 0. Further, the right-hand side of the

inequality constraint in (3) implies that aT x� yð ÞP 0, and if an a
satisfies the inequality in (3), so does ca with c P 0. Therefore, we
set aT x� yð Þ ¼ 1 without loss of generality. Finally, the problem
(3) reduces to the following optimization problem with respect to a:

j�1
� ¼min

a
kR1=2

x ak2 þ kR
1=2
y ak2

� �
s:t: aTðx� yÞ ¼ 1: ð4Þ

If the problem (4) is feasible and convex, and its objective is
bounded below, there exists an optimal a�. In addition, the optimal
b can be computed as b� ¼ aT

�x� j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT
�Rxa�

p
¼ aT

�y þ j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT
�Rya�

p
.

2.2. Manifold regularization

To utilize unlabeled samples, a manifold regularization frame-
work (Belkin et al., 2006) was proposed to introduce a regulariza-
tion that exploits the geometry of marginal distribution.

Suppose that there is a probability distribution P on X � R,
which generates samples. Labeled examples are ðx; yÞ pairs gener-
ated according to P, and unlabeled examples are x 2 X generated
according to the marginal distribution PX of P. In the manifold reg-
ularization framework, a roughness penalty on possible solutions f
is imposed by adding a penalty term kfk2

I to an objective, where the
norm is defined on a manifold M, the support of PX .

Since PX is unknown in most applications, an approximation
based on the labeled and unlabeled samples shall be considered.

In (Belkin et al., 2006),
R
M
hrMf ;rMf i is used as kfk2

I , and it is
approximated on the basis of labeled and unlabeled samples using
the graph Laplacian associated with the samples. Here, the graph is
an approximation of the manifold M, where a node x in the graph
is a point in M and the weight wij on an edge connecting two nodes
xi and xj is the adjacency of the nodes. If we choose exponential

weights, e.g., wij ¼ exp½�rskxi � xjk2
2�, when the number of points

approaches infinity, after appropriate scaling, the graph Laplacian
converges to the true Laplace–Beltrami operator on the manifold
(Theorem 3 in (Belkin and Niyogi, 2005)). Therefore, we consider

1
ð‘þuÞ2

P‘þu
i;j¼1wijðf ðxiÞ � f ðxjÞÞ2 instead of kfk2

I .

Suppose that we are given a set of labeled samples fxi; yig
‘
i¼1 and

a set of unlabeled samples fxjg‘þu
j¼‘þ1, and kfk2 is an appropriate

smoothness measure on f in the function space of possible solu-
tions; then, the optimization problem with the manifold regulari-
zation is

arg min
f

1
‘

X‘
i¼1

Vðxi; yi; f Þ þ cAkfk
2 þ cI

ð‘þ uÞ2
X‘þu

i;j¼1

wijðf ðxiÞ � f ðxjÞÞ2

¼ arg min
f

1
‘

X‘
i¼1

Vðxi; yi; f Þ þ cAkfk
2 þ cI

ð‘þ uÞ2
f T Lf ; ð5Þ

where f ¼ ½f ðx1Þ; . . . ; f ðx‘þuÞ�T ;Vðxi; yi; f Þ is some loss function, cA

and cI control the complexity of f in the function space and in the
intrinsic geometry of PX respectively, and L ¼ D�W is the graph
Laplacian. Here, W is the edge weights matrix of the data adjacency
graph having elements wij. D 2 Rð‘þuÞ�ð‘þuÞ is a diagonal matrix

whose elements 8i Dii ¼
P‘þu

j¼1 wij and otherwise 0.
In this manifold regularization framework, by choosing squared

loss ðyi � f ðxiÞÞ2 and hinge loss max½0;1� yif ðxiÞ� as the loss func-
tion for RLS and SVM respectively, RLS and SVM are extended to
semi-supervised versions, Lap-RLS and Lap-SVM (Belkin et al.,
2006).

Other related works based on the manifold regularization
framework are presented in (Goldberg et al., 2007,). They incorpo-
rated dissimilarity into their objective function. In (Chapell et al.,
2008), the graph Laplacian was combined with a semi-supervised
SVM. Further, a smoothness measure analogous to the manifold
regularization was used in (Li et al., 2008).

3. Laplacian minimax probability machine

In this section, we show that MPM can be extended to a mani-
fold-regularized version, and we propose an algorithm, block coor-
dinate descent, to solve the Lap-MPM optimization problem.
Furthermore, we can obtain a kernelized version of Lap-MPM,
called Lap-KMPM, on the basis of a theorem similar to Corollary
5 in (Lanckriet et al., 2002).

3.1. Linear case

Here, our objective is to construct linear Lap-MPM to exploit the
unlabeled samples. In order to incorporate the manifold regulariza-
tion framework, we introduce a manifold regularization term to
the objective in the optimization problem (4), as in the case of
Belkin et al. (2006).

Let fxigNx
i¼1; fyig

Ny

i¼1; f 2 Hða; bÞ be as in Section 2.1, and fzigNz
i¼1

denote unlabeled samples. Then, the optimization problem (4)
becomes

j�1
� ¼min

a
kR1=2

x ak2 þ kR
1=2
y ak2 þ

cI

ð‘þ uÞ2
X‘þu

i;j¼1

wijðf ðtiÞ � f ðtjÞÞ2
 !

s:t: aTðx� yÞ ¼ 1;

ð6Þ

where t 2 fxigNx
i¼1 [ fyig

Ny

i¼1 [ fzigNz
i¼1. Since ðf ðtiÞ � f ðtjÞÞ in the prob-

lem (6) is equal to ðaT ti � aT tjÞ, the optimization problem (6) can
be rewritten as

j�1
� ¼min

a
ðkR1=2

x ak2 þ kR
1=2
y ak2 þ

cI

ð‘þ uÞ2
aT ZLZT aÞ

s:t: aTðx� yÞ ¼ 1;
ð7Þ

where Z 2 Rd�n is a matrix composed of all labeled and unlabeled
samples, n ¼ Nx þ Ny þ Nz, and L is the graph Laplacian given by
L ¼ D�W . Note that the elements of Z are ordered by samples
belonging to the class X ; Y, and unlabeled samples, and the
elements of W are constructed in the same order.

Although the introduction of the manifold regularization term
is straightforward, it is clear that the first and second terms
appearing in the objective of (7) and the third term differ in scale
and/or dimension. Therefore, we introduce the square root of the
manifold regularization term as our regularization term, where
the normalizing factor 1

ð‘þuÞ2
and regularization parameter cI are

coerced into one parameter k. Note that even if we introduce the
square root term instead of the original form, the representer the-
orem still holds, as will be shown in the following section, which is
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