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a b s t r a c t

We derive in this work new upper bounds for estimating the generalization error of kernel classifiers, that
is the misclassification rate that the models will perform on new and previously unseen data. Though this
paper is more targeted towards the error estimation topic, the generalization error can be obviously
exploited, in practice, for model selection purposes as well. The derived bounds are based on Rademacher
complexity and result to be particularly useful when a set of unlabeled samples are available, in addition
to the (labeled) training examples: we will show that, by exploiting further unlabeled patterns, the con-
fidence term of the conventional Rademacher complexity bound can be reduced by a factor of three.
Moreover, the availability of unlabeled examples allows also to obtain further improvements by building
localized versions of the hypothesis class containing the optimal classifier.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Getting a deep insight into the factors that influence the perfor-
mance of a statistical procedure is a basic step to improve models
reliability and effectiveness. When focussing on machine learning
approaches to pattern classification, one of the most explored pro-
cedures aims at solving the well-known error estimation problem,
targeting the estimation of the generalization error of a classifier,
i.e. the misclassification rate that the predictor will perform on
new future samples. Error estimation procedures are straightfor-
wardly linked to the model selection problem, whose goal is the
choice (based on the estimated generalization error) of the optimal
classifier from a set of possible models, namely the hypothesis space.

Several approaches have been proposed for such purposes (e.g.
Vapnik and Chervonenkis, 1971; Bartlett and Mendelson, 2003;
Bartlett et al., 2005; Bousquet and Elisseeff, 2002), which allow
to provide upper-bounds of the generalization performance of a
classifier: these quantities can be used as an index for comparing
different models and choosing the best performing predictor dur-
ing the model selection phase. These upper-bounds usually consist
of three main terms, i.e.:

1. The empirical error of the classifier, performed by the model on
the training data, used for the predictor learning;

2. A bias, where the complexity of the hypothesis space, where the
classifier is picked-up from, is taken into account;

3. Finally, a confidence term, usually independent of the hypothe-
sis space and the chosen classifier, which only depends on the
user-defined confidence value of the bound and on the cardinal-
ity of the training set.

The objective of these approaches is to investigate the finite
sample behavior of a model instead of the asymptotic one: despite
being appealing for real-world problems, their practical applicabil-
ity has been questioned for a long time. Concerning finite sample
bounds, one of the most recent and effective approaches relies
on the Rademacher complexity (RC), a powerful statistical tool that
has been investigated throughout the last years (Bartlett et al.,
2002; Anguita et al., 2012; Anguita et al., 2011c), for which a prac-
tical procedure targeting the use of RC bounds to model selection
and error estimation of kernel classifiers has been recently
proposed in Anguita et al. (2012).

The RC approach, in particular, showed to be more effective
than traditional techniques (e.g. Arlot and Celisse, 2010; Efron
and Tibshirani, 1993) when applied to the small-sample regime
(Anguita et al., 2011b; Bartlett et al., 2002; Anguita et al., 2011c),
i.e. problems where the cardinality of the labeled training set is
comparable to or (even remarkably) lower than the dimensionality
of the samples. In this work we show how RC bounds can be fur-
ther improved by exploiting eventually available extra-knowledge
on the phenomenon to be modeled: this additional information has
the form of unlabeled data, that are often available in real-world
pattern classification problems, as also confirmed by the growing
interest in the semi-supervised learning framework (Bennett and
Demiriz, 1999; Chapelle et al., 2010). On the opposite of the
approaches, proposed in this latter framework, we do not focus
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on how exploiting unlabeled data for training a model, as we move
the spotlights on the error estimation step, by properly modifying
the RC theory so that it can exploit the unlabeled extra-knowledge.
In particular, we first show how a new RC bound can be derived,
which contemplates both labeled and unlabeled data, allowing to
reduce the confidence term; moreover, we also propose a method,
based on the previous work of Anguita et al. (2012), allowing to use
unlabeled data for selecting a more effective, problem-dependent
and local hypothesis space, resulting in a much sharper and accu-
rate bound.

2. Theoretical framework and results

We consider the following pattern classification problem: based
on a random observation of X 2 X # Rd one has to estimate
Y 2 Y# �1;þ1f g by choosing a suitable prediction rule f : X !
½�1;þ1�. The generalization error Lðf Þ ¼ E X ;Yf g‘ðf ðXÞ; YÞ of f is de-
fined through a bounded loss function ‘ðf ðXÞ;YÞ : ½�1;þ1��
Y ! ½0;1�. Let Dnl

: ðXl
1;Y

l
1Þ; . . . ; ðXl

nl
; Yl

nl
Þ

n o
be a set of independent

and identically distributed (i.i.d.) labeled samples and
Dnu : ðXu

1Þ; . . . ; ðXu
nu
Þ

� �
a set of i.i.d. unlabeled patterns, originated

by the same distribution PðX ;YÞ.
As PðX ;YÞ is obviously unknown, Lðf Þ cannot be directly com-

puted. We can compute, instead, the empirical estimation of Lðf Þ
on the set of labeled data:

Lnl
ðf Þ ¼ 1

nl

Xnl

i¼1

‘ðf ðXl
iÞ;Y

l
iÞ ð1Þ

which, however, cannot be safely used for error estimation pur-
poses as Lnl

ðf Þ is a clearly optimistically-biased estimation of the
generalization error. Our objective is to derive a statistical sound
upper bound of Lðf Þ, by taking into account the information embed-
ded in both Dnl

and Dnu .
In the well-known framework of Structural Risk Minimization

(SRM) (Vapnik, 2000), we have to define an infinite sequence of
hypothesis spaces of increasing complexity F i; i ¼ 1;2; . . .f g: thus,
we have to choose the most suitable function space F i and,
obviously, the model f � 2 F i that is characterized by the best
generalization ability within F i. As the true data distribution,
originating the data, is unknown, it is only possible to state that:

Lðf Þ � Lnl
ðf Þ

� �
f2F i
6 sup

f2F i

Lðf Þ � Lnl
ðf Þ

� �
ð2Þ

or, equivalently:

Lðf Þ 6 Lnl
ðf Þ þ sup

f2F i

Lðf Þ � Lnl
ðf Þ

� �
; 8f 2 F i: ð3Þ

In this framework, according to the SRM procedure, the following
function space and the corresponding optimal classifier are chosen:

f �;F� : arg min
F i2 F1 ;F2 ;...f g

min
f2F i

Lnl
ðf Þf2F i

þ sup
f2F i

Lðf Þ � Lnl
ðf Þ

� �" #
: ð4Þ

The generalization bias (supf2F i
Lðf Þ � Lnl

ðf Þ
� �

) is a random variable,
thus it is possible to statistically analyze it and derive a bound
which holds with a user-defined probability, e.g. as shown in Bart-
lett et al. (2002).

In our analysis, in particular, we restrict to two types of suitable
prediction rules, since their associated loss functions, namely the
hard loss ‘HðfHðxÞ; yÞ and the soft (or ramp) loss (Collobert et al.,
2006) ‘SðfSðxÞ; yÞ, are bounded ½0;1�ð Þ and symmetric
‘ðf ðxÞ; yÞ ¼ 1� ‘ðf ðxÞ;�yÞð Þ:

fHðxÞ ¼ signðwT/ðxÞ þ bÞ; ð5Þ

‘HðfHðxÞ; yÞ ¼
1� yfHðxÞ

2
; ð6Þ

fSðxÞ ¼
minð1;wT/ðxÞ þ bÞ if wT/ðxÞ þ b > 0;
maxð�1;wT/ðxÞ þ bÞ if wT/ðxÞ þ b 6 0;

�
ð7Þ

‘SðfSðxÞ; yÞ ¼
1� yfSðxÞ

2
; ð8Þ

where /ð�Þ : Rd ! RD with D� d; w 2 RD and b 2 R. The function
/ð�Þ is introduced to allow for a later exploitation of kernels; how-
ever, we will focus only on the linear case in this paper, as it simpli-
fies the discussion: the usual non-linear formulation can be easily
derived by applying the well-known kernel trick (Shawe-Taylor
and Cristianini, 2000).

We recall the definition of Rademacher complexity (RC) of a class
of functions F :

R̂nl
ðFÞ ¼ Ersup

f2F

2
nl

Xnl

i¼1

ri‘ðf ðxiÞ; yiÞ ¼ Ersup
f2F

1
nl

Xnl

i¼1

rif ðxiÞ ð9Þ

where r1; . . . ;rnl
are nl independent Rademacher random variables,

i.e. independent random variables for which Pðri ¼ þ1Þ ¼
Pðri ¼ �1Þ ¼ 1=2. It is worth underlining that the last equality
holds if one of the losses introduced above is exploited, as it is valid
only for bounded and symmetric functions. The quantity in Eq. (9) is
a computable realization of the expected Rademacher complexity
RðFÞ ¼ EðX ;YÞR̂nl

ðFÞ. The most renewed result in Rademacher com-
plexity theory states that (Bartlett and Mendelson, 2003):

Lðf Þf2F 6 Lnl
ðf Þf2F þ R̂nl

ðFÞ þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2

d

� �
2nl

s
ð10Þ

which holds with probability ð1� dÞ and can be exploited in the
SRM framework (see Eq. (4)). Note that the previous bound does
not allow to exploit the information included in the unlabeled sam-
ples: our first result will thus allow to contemplate Dnu in the esti-
mation of the generalization performance of f.

2.1. Exploiting unlabeled samples for reducing the confidence term

We can safely assume that the number of unlabeled samples is
larger than the cardinality of the labelled training patterns. Thus,
we can split the unlabeled data in blocks of similar size by defining
the quantity m ¼ nu=nlb c þ 1, so to create a ghost sample D0mnl

con-
sisting of mnl patterns. Then, we can upper bound the expected
generalization bias as follows1:

E X ;Yf gsup
f2F

Lðf Þ�Lnl
ðf Þ

� �
¼E X ;Yf gsup

f2F
EfX0 ;Y0g

1
m

Xm

i¼1

1
nl

Xi�nl

k¼ði�1Þ�nlþ1

‘0k

24 35� 1
nl

Xnl

i¼1

‘i

24 35
6E X ;Yf gEfX0 ;Y0g

� 1
m

Xm

i¼1

sup
f2F

1
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Xi�nl

k¼ði�1Þ�nlþ1
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� 	24 35
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m
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1
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h i24 35
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1
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2
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1
m
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R̂i
nl
ðFÞ
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where jkjnl
¼ ðk� 1Þ mod ðnlÞ þ 1. The last quantity, which we

define the expected extended Rademacher complexity

1 We define ‘ðf ðxiÞ; yiÞ � ‘i for notational simplicity.
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