
Robust and efficient object segmentation using pseudo-elastica

Matthias Krueger ⇑,1, Patrice Delmas, Georgy Gimel’farb
Department of Computer Science, The University of Auckland, Auckland 1142, New Zealand

a r t i c l e i n f o

Article history:
Available online 3 January 2013

Keywords:
Object segmentation
Image segmentation
Second-order energy
Curvature regularity
Active contour
Elastica

a b s t r a c t

A new object segmentation method based on second-order energy minimisation is proposed. It is called
pseudo-elastica as it relates to the classic Euler’s elastica but resulting contours cannot be expected to con-
verge towards continuous elastica if the resolution is increased. Comparing to prior works, our segmen-
tation technique can be easily applied to both closed contours and open contours with fixed endpoints,
and its computational complexity, OðN log NÞ, is significantly lower. The efficiency is increased by extend-
ing the idea of bidirectional Dijkstra-type search to second-order energies and incorporating heuristics
with some sacrifice in exact energy minimisation. Our pseudo-elastica generalises the classic first-order
path-based schemes to second-order energies while maintaining the same low complexity. Experiments
suggest that it scores similar or better results and usually requires considerably less user input than the
state-of-the-art approaches. The algorithm can be made anisotropic in order to allow corners in the
contour.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Segmentation of images into specific non-overlapping regions is
one of the major computer vision problems, which has been inten-
sively explored for a long time. Besides the graph cut- (e.g. Boykov
et al., 2001; Boykov and Kolmogorov, 2003) and the level set-based
techniques (e.g. Caselles et al., 1997; Chan and Vese, 2001), one
important family of algorithms exploits weighted shortest paths.
Fischler et al. (1981) arguably were the first to extract object con-
tours of interest by computing shortest paths in graphs, whose ver-
tices are pixels. Later, Cohen and Kimmel (1997) developed this
approach further by incorporating the fast marching method
(Sethian, 1996) to escape metrication errors, being intrinsic to
graph-based discrete optimisation methods and leading to inaccu-
rate segmentation for certain graphs.

Cohen and Kimmel (1997) were also the first to succeed in com-
puting globally optimal active contours (AC). The AC concept,
introduced by Kass et al. (1988), is to segment an image by aligning
a curve evolving under suitable regularity constraints with a goal
region boundary. This technique, as well as its main successor,
the geodesic active contour (GAC) (Caselles et al., 1997), guides
the curve evolution by gradient descent minimisation of particular
energy functionals. The obtained contours are, generally, only lo-
cally optimal and therefore often converge to spurious edges.

The above (Cohen and Kimmel, 1997; Fischler et al., 1981) and
further methods (Appleton and Talbot, 2005; Boykov and
Kolmogorov, 2003) for finding globally optimal ACs share a
common property: the first-order energy functionals, depending
basically on the weighted arc length. Such techniques are by
definition biased towards short curves and often result in
unsatisfactory segmentation. Appleton and Talbot’s method is a
noteworthy exception with a scale-invariant energy, yet even
scale-invariant first-order methods have been shown to prefer
small regions (cf. Schoenemann and Cremers, 2007).

For example, an attempt to interpolate endpoints of an incom-
plete circle in Fig. 1(a) with a first-order shortest path yields the
boundary in Fig. 1(b). A more sophisticated approach is to incorpo-
rate the curvature j into the energy functional in order to enforce
smooth transitions. Such considerations lead very naturally to the
elastica energy of a sufficiently smooth curve C in R2:

EelðCÞ ¼
Z

C
ðaj2 þ bÞds; ð1Þ

where j is the curvature of C, and a and b are positive constants.
The elastica as minimiser of this energy were first studied in depth
by Euler (1744); for a review of some of its properties see e.g. (Shah,
2002). Since the curvature term j favours circular structures, the
elastica energy of Eq. (1) conforms better to intuitive interpolation
of boundary pieces missed (cf. Mumford, 1994). Accordingly, our
paper proposes an efficient user-guided image segmentation algo-
rithm based on weighted versions of the classic elastica energy.
As shown in Fig. 1(c), it interpolates the incomplete circle more
satisfactorily. This property of second-order energies has already
led to many successful applications in edge grouping (e.g. Elder
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and Zucker, 1996; Mahamud et al., 1999; Shashua and Ullman,
1988; Thornber and Williams, 1995; Wang et al., 2005), image
impainting (e.g. Ambrosio and Masnou, 2003; Chan et al., 2002),
and segmentation (Zhu and Chan, 2007; Schoenemann and
Cremers, 2007; Sundaramoorthi et al., 2009; Windheuser et al.,
2009; El-Zehiry and Grady, 2010a,b). We compute approximate
global minimisers of such elastica-type energies fast by generalising
a well-known bidirectional shortest path scheme (e.g. Nicholson,
1966; Pohl, 1971), to the second-order case. In contrast to known
similar works (Schoenemann and Cremers, 2007; Windheuser
et al., 2009; El-Zehiry and Grady, 2010a,b) our approach is signifi-
cantly more efficient and can extract both closed contours and open
contours with fixed endpoints (see Section 2 for more details and
further related work). By its computational complexity of
OðN log NÞ, the proposed core algorithm can be considered as a
generalisation of first-order shortest path algorithms such as
(Dijkstra, 1959; Sethian, 1996) and the related image segmentation
methods(Cohen and Kimmel, 1996; Fischler et al., 1981). Yet a few
heuristics have to be applied in order to achieve such computational
efficiency, therefore the computed contours only approximate the
global optimum.

Like the algorithms in (Schoenemann and Cremers, 2007;
El-Zehiry and Grady, 2010b) our technique is edge-based, i.e. it
incorporates only information from the object boundary. Therefore
it can readily be applied to images where region-based approaches
fail, namely if the object and the background have a similar colour/
intensity distribution. This is often the case for e.g. ultrasound
images in medical imaging.

Note that unlike the discrete elastica proposed by Bruckstein
et al. (2001) the pseudo-elastica developed in this paper cannot
be expected to converge towards the continuous elastica. The algo-
rithm clearly favours straight line segments and this does not
change if the grid resolution is increased. Moreover, due to the sec-
ond-order energy, the solutions found by the proposed bidirec-
tional search scheme will in general not be optimal. As,
nevertheless, in most cases the computed contours qualitatively
resemble the continuous elastica (cf. Mumford, 1994; Bruckstein
et al., 1996), we call them pseudo-elastica. Some experiments of
our algorithm in the case of classic elastica curves are described
in Section 4.4 below.

The paper is organised as follows. Section 2 reviews the known
dynamic programming- and curvature-based segmentation ap-
proaches. The segmentation energies studied in the paper are
introduced in Section 3, and algorithms that search for curves
approximating global energy minimisers are proposed in Section 4.
These core algorithms are integrated into a user-guided framework
for object segmentation in Section 5, and Section 6 presents exper-
imental results on several images, including quantitative compari-
sons with state-of-the-art techniques. The discussion and
conclusions are given in Section 7.

2. Related Prior Work

2.1. Active Contours and Dynamic Programming

The segmentation energies used by our technique can be seen
as second-order regularisations of the classic GAC functional

EGACðCÞ ¼
Z

C
f ðsÞds ð2Þ

so that the GACs (Caselles et al., 1997) as well as the classic ACs,
introduced in the seminal paper by Kass et al. (1988) certainly re-
late to our approach. Both these techniques use gradient descent
techniques to find solutions that are in general only locally optimal.

We determine suitable contours which approximate the global
minimisers, by applying discrete optimisation rather than curve
evolution. Discrete approaches to image segmentation have a long
history. After early approaches using dynamic programming (e.g.
Montanari, 1971; Martelli, 1976) Fischler et al. (1981) were argu-
ably the first to interpret the optimal boundary as a shortest path
in a graph whose vertices correspond to the image pixels. Thereby
they significantly improved the efficiency compared to the classic
DP approaches. Shortly after the AC was introduced by Kass et al.
(1988), Amini et al. (1990) proposed to optimise ACs with DP. Sim-
ilarly to the variational approach, an initial polygon close to an ob-
ject of interest has to be provided by the user. Then at each
iteration the movements of the nodes minimising the AC’s energy
are computed with the DP.

Cohen and Kimmel (1997) adapted later and enhanced the idea
by Fischler et al. (1981) by replacing the graph search with the fast
marching method (Sethian, 1996) to exclude the graph-related
metrication errors and find globally optimal GACs with given end-
points. Appleton and Talbot (2005) applied Cohen and Kimmel’s
technique in a curved product space in order to compute closed
globally optimal GACs in 2D images.

Schoenemann and Cremers (2007) were the first to propose an
algorithm delivering globally optimal solutions for a second-order
image segmentation energy. However, the efficiency is poor be-
cause a large product graph is used, resulting in computation times
of several minutes to hours. Windheuser et al. (2009) suggested a
related algorithm computing the shortest path in a four-dimen-
sional layered product graph. This high dimensional graph also re-
sults in a low computational efficiency. Later, Schoenemann et al.
(2009) proposed region-based image segmentation based on linear
programing, however this approach also suffers from a high run-
ning time. Recently, it was extended to multi-label problems in
(Schoenemann et al., 2011), where the authors reported running
times of several hours even on comparably small pictures. Strand-
mark and Kahl (2011) reduced the number of constraints in the
optimisation problem in Schoenemann et al., 2009, thus decreasing

Fig. 1. Missing section of an incomplete circle (a); interpolated by a first-order shortest path (b); and an open pseudo-elastica (c) with directional constraints given at both
endpoints.
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