
Segmenting images with gradient-based edge detection
using Membrane Computing

Daniel Díaz-Pernil a,⇑, Ainhoa Berciano a,c, Francisco Peña-Cantillana b, Miguel A. Gutiérrez-Naranjo b

a CATAM Research Group, Dept. of Applied Mathematics I, University of Seville, Spain
b Research Group on Natural Computing, Dept. of Computer Science and AI, University of Seville, Spain
c Department of Didactic of Mathematics and Experimental Sciences, University of the Basque Country, Spain

a r t i c l e i n f o

Article history:
Available online 2 November 2012

Keywords:
Edge detection
Sobel algorithm
Tissue P systems
Membrane Computing
CUDA

a b s t r a c t

In this paper, we present a parallel implementation of a new algorithm for segmenting images with
gradient-based edge detection by using techniques from Natural Computing. This bio-inspired parallel
algorithm has been implemented in a novel device architecture called CUDA™(Compute Unified Device
Architecture). The implementation has been designed via tissue P systems on the framework of
Membrane Computing. Some examples and experimental results are also presented.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Paralleling classical digital image algorithms is a big challenge
for the next years (Parker, 2010; Davies, 2012). Such paralleling
is much more complex than the merely simultaneous application
of the sequential algorithm to different pieces of the image. The
coordination of different simultaneous processes in a whole algo-
rithm is so hard task that commonly the parallel algorithm needs
to be re-designed with only slight references to the classical one.
Usually, the design of a new parallel implementation not inspired
by the sequential one allows an open-mind vision of the problem
and the proposal of new creative solutions.

The key point of paralleling classical sequential algorithms is
the search of the efficiency and such efficiency is strongly linked
to the development of new parallel hardware architectures with
allows a realistic implementation of the theoretical advantages of
the parallel processes.

In this paper, the matter of study is the Sobel algorithm (Sobel,
1970) for edge detection. We present a parallel implementation of
the algorithm in the 3� 3 and 5� 5 versions. Based on a detailed
study of these parallel implementations, in this paper we also
introduce a new edge detection algorithm, the so called AGP
segmentator. A preliminary experimental comparison with the par-
allel implementation of the 3� 3 and 5� 5 Sobel operator shows

that the AGP segmentator improves the classical version of the
Sobel operator.

Paralleling classical computer algorithm is currently a vivid
research area where different hardware architectures (clusters,
grids, FPGA, . . .) propose different solutions (Khalid et al., 2011a;
Khalid et al., 2011b; Ogawa et al., 2010; Sanduja and Patial,
2012). The chosen hardware architecture for our parallel imple-
mentation has been the Compute Unified Device Architecture,1

CUDA™. This is a novel general purpose parallel computing architec-
ture that allows the parallel NVIDIA Graphics Processing Units
(GPUs) to solve many complex computational problems in a more
efficient way than on a CPU. The choice of this parallel architecture
is supported by several reasons. The first one is that the computing
language CUDA™ allows programmers a friendly model for imple-
menting easily parallel programs, but the main reason comes from
the practical side. In the last years, there exists an increasing interest
in the specialized industry for the development of more and more
powerful Graphic Processing Units which can be used for general
purposes. This interest leads, on the one hand, to a more economi-
cally accessible (and hence, more extended) hardware and, on the
other hand, to the development of more powerful computational
units.

The design of new parallel solutions needs a strong theoretical
support that allows to control, to formalize, to check and even,
sometimes, to formally verify new algorithms. As a novel contribu-
tion with respect to recent contributions found in the literature,
the theoretical foundation of our parallel implementation of the

0167-8655/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.patrec.2012.10.014

⇑ Corresponding author.
E-mail addresses: sbdani@us.es (D. Díaz-Pernil), ainhoa.berciano@ehu.es

(A. Berciano), frapencan@gmail.com (F. Peña-Cantillana), magutier@us.es
(M.A. Gutiérrez-Naranjo). 1 See http://www.nvidia.com/object/cuda_home_new.html.

Pattern Recognition Letters 34 (2013) 846–855

Contents lists available at SciVerse ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec

http://dx.doi.org/10.1016/j.patrec.2012.10.014
mailto:sbdani@us.es
mailto:ainhoa.berciano@ehu.es
mailto:frapencan@gmail.com
mailto:magutier@us.es
http://dx.doi.org/10.1007/s11047-011-9287-4
http://dx.doi.org/10.1016/j.patrec.2012.10.014
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec

Edge Detection algorithms is based on Natural Computing
processes, namely, on Membrane Computing techniques.

As it will be shown below, Membrane Computing techniques
are inspired in the flow of metabolites between cells of a living tis-
sue or between the organelles in an eucaryotic cell. This flow of
metabolites takes place in parallel in Nature and can be interpreted
as a flow of information for computational purposes. Instead of a
set of few instructions with complex data structures, the computa-
tion steps in a Membrane Computing device are regulated by a set
of rules with a notation close to biochemical reactions. From a
computational point of view, such reactions can be read as a set
of if A then B rules where A and B are very simple data. As we will
show below, this theoretical construction fits perfectly for a com-
putational implementation within the GPU architecture.

The paper is organized as follows: firstly, we recall some pre-
liminaries on Natural Computing and the definition of the used
model of tissue P systems. Next, we provide a short description
of the algorithms object of our study: thresholding and the Sobel
algorithm for edge detection. In Section 4 some details of the
implementation and several examples are provided. Finally, some
remarks are given in the last section.

2. Natural computing

Nature is a big source of inspiration for new computational par-
adigms. Nature acts by performing changes (from microscopic bio-
chemical reactions to ecological global variations) which can be
interpreted as computations. Natural Computing2 abstracts the
way Nature operates, providing ideas for new computing models.
It involves research where the physical support is non standard, as
DNA-based Molecular Computing (Adleman, 1994) or Quantum Com-
puting (Hirvensalo, 2004); but almost all the research lines in Natural
Computing are currently supported in silicon-based computers.
Among them, we can cite Artificial Neural Networks (McCulloch and
Pitts, 1943), Genetic Algorithms (Holland, 1992), Swarm Intelligence
(Engelbrecht, 2005), Artificial Immune Systems (de and Timmis,
2002), Amorphous Computing (Abelson et al., 2000), Membrane
Computing (Păun, 2002) or Cellular Automata (von Neumann, 1966).

All these computational paradigms have in common the use of
an alternative way of encoding the information and the use of
intrinsic parallelism of natural processes. In this paper, we will
use the theoretical framework of Membrane Computing for han-
dling digital images. The use of techniques inspired in Nature for
processing digital images is not new. Many problems in such pro-
cessing have features which make it suitable for techniques in-
spired by nature. One of them is the treatment of the image can
be parallelized and locally solved. Regardless how large is the pic-
ture, the segmentation process can be performed in parallel in dif-
ferent local areas of the picture. Another interesting feature is that
the local information needed for a pixel transformation can also be
easily encoded in the data structures used in Natural Computing. In
the literature, we can find many examples of the use of Natural
Computing techniques for dealing with problems associated to
the treatment of digital images. One of the classic examples is
the use of Cellular Automata (Rosin, 2006; Selvapeter and Hordijk,
2009). Other efforts are related to Artificial Neural Networks
(Egmont-Petersen et al., 2002).

In Membrane Computing, there is a large tradition in the study
of dealing with information structured as two dimensional
objects (see, e.g., (Ceterchi et al., 2003a; Ceterchi et al., 2003b;
Dersanambika and Krithivasan, 2004; Krishna et al., 2001)). The
main motivation for these studies is to bring together Membrane

Computing and Picture Grammars. Recently, a new research line
has been opened by applying well-known Membrane Computing
techniques for solving problems from Digital Imagery as segmenta-
tion (Christinal et al., 2009; Christinal et al., 2011; Díaz-Pernil et al.,
2010b; Díaz-Pernil et al., 2011), thresholding (Christinal et al.,
2010a), smoothing (Peña-Cantillana et al., 2011b) or the symmetric
dynamic programming stereo algorithm (Gimel’farb et al., 2011).

The theoretical model used in this paper, Membrane Comput-
ing, is a model of computation inspired by the structure and func-
tioning of cells as living organisms able to process and generate
information. In particular, it focusses on membranes, which are
involved in many reactions taking place inside various compart-
ments of a cell. They act as selective channels of communication
between different compartments as well as between the cell and
its environment (Alberts et al., 2002). The computational devices
in Membrane Computing are called P systems (Păun, 2000).
Roughly speaking, a P system consists of a membrane structure,
in whose compartments one places multisets of objects which
evolve according to given rules which are usually applied in a syn-
chronous non-deterministic maximally parallel manner.3 We stress
here on the so-called (because of their membrane structure) tissue P
Systems (Martín-Vide et al., 2003) endowed with cell division.

2.1. Tissue P systems with cell division

In this section we present the formal bio-inspired model where
we have implemented our edge detection algorithms. First of all,
let us recall some basic preliminaries.

An alphabet, R, is a non empty set, whose elements are called
symbols. An ordered sequence of symbols is a string. The number
of symbols in a string u is the length of the string, and it is denoted
by juj. As usual, the empty string (with length 0) will be denoted by
k. A multiset m over a set A is a pair ðA; f Þ where f : A! N is a map-
ping. If m ¼ ðA; f Þ is a multiset then its support is defined as
suppðmÞ ¼ fx 2 Ajf ðxÞ > 0g and its size is defined as

P
x2Af ðxÞ. A

multiset is empty (resp. finite) if its support is the empty set (resp.
finite). If m ¼ ðA; f Þ is a finite multiset over A, and suppðmÞ ¼
fa1; . . . ; akg, then it will be denoted as m ¼ ffaf ða1Þ

1 ; . . . ; af ðakÞ
k gg. That

is, superscripts indicate the multiplicity of each element, and if
f ðxÞ ¼ 0 for any x 2 A, then this element is omitted. A graph G is a
pair G ¼ ðV ; EÞ where V is the set of vertices and E is the set of
edges, each one of which is a (unordered) pair of (different) verti-
ces. In what follows we assume the reader is already familiar with
the basic notions and the terminology underlying P systems.

Tissue P systems with cell division is a well-established P
system model presented by Păun et al. in (Păun et al., 2008). The
biological inspiration for considering cell division in this model is
that alive tissues are not static network of cells, since cells are
duplicated via mitosis in a natural way. Tissue P systems
with cell division have been previously used to design solutions
to NP-complete problems in polynomial time (see (Díaz-Pernil
et al., 2007; Díaz-Pernil et al., 2008a) and the references
therein).

Formally, a tissue P system with cell division of degree q P 1 is a
tuple of the form

P ¼ ðC;R; E;w1; . . . ;wq;R; iP; i0Þ;

where:

� C is a finite alphabet, whose symbols will be called objects;
� Rð� CÞ is the input alphabet;

2 An introduction on Natural Computing can be found in (de Castro, 2007; Kari and
Rozenberg, 2008).

3 We refer to (Păun, 2002) for basic information in this area, to (Păun et al., 2010)
for a comprehensive presentation and the P system web page http://ppage.psys-
tems.eu, for the up-to-date information.

D. Díaz-Pernil et al. / Pattern Recognition Letters 34 (2013) 846–855 847

http://ppage.psystems.eu
http://ppage.psystems.eu

Download English Version:

https://daneshyari.com/en/article/534575

Download Persian Version:

https://daneshyari.com/article/534575

Daneshyari.com

https://daneshyari.com/en/article/534575
https://daneshyari.com/article/534575
https://daneshyari.com

