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a b s t r a c t

This paper presents a coarse-to-fine learning algorithm for multiclass problems. The algorithm is applied
to ensemble-based learning by using boosting to construct cascades of classifiers. The goal is to address
the training and detection runtime complexities found in an increasing number of classification domains.
This research applies a separate-and-conquer strategy with respect to class labels, in order to realize effi-
ciency in both the training and detection phases under limited computational resources, without com-
promising accuracy. The paper demonstrates how popular, non-cascaded algorithms like AdaBoost.M2,
AdaBoost.OC and AdaBoost.ECC can be converted into robust cascaded classifiers. Additionally, a new
multiclass weak learner is proposed that is custom designed for cascaded training. Experiments were
conducted on 18 publicly available datasets and showed that the cascaded algorithms achieved consid-
erable speed-ups over the original AdaBoost.M2, AdaBoost.OC and AdaBoost.ECC in both training and
detection runtimes. The cascaded classifiers did not exhibit significant compromises in their generaliza-
tion ability and in fact produced evidence of improved accuracies on datasets with biased-class
distributions.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In many complex classification domains, the performance bot-
tleneck occurs in both the learning and the object detection phases.
This is frequently experienced in fields like computer vision,
natural language parsing and translation and in ever increasing
real-time streaming settings. Often, it is the sheer volume of data
needing to be processed which primarily contributes to protracted
runtimes; but, in numerous occasions, the feature extraction
component presents the highest computational costs.

Coarse-to-fine approaches are becoming more prevalent as solu-
tions to these problems (Petrov et al., 2010), with the ever increas-
ing number of dense domains. Coarse-to-fine strategies gradually
increase complexity into its learning process, while minimizing loss
of accuracy. Each subsequent model refines the previous one by
using the outputs of the coarser stages. The classification phase is
subsequently accelerated, since only a subset of features undergoes
evaluation. Extensive research has shown, since the original contri-
bution by Viola and Jones (2001), how this strategy can be applied
to multi-layer classifiers in the form of cascades.

A large proportion of these kinds of real-world problems involve
multiclass classification. A considerable corpus of research has at-
tested to the ability of boosting and ensemble-based learning to pro-
vide robust and efficient solutions to binary class problems.
Subsequently, effective and theoretically proven extensions of the
popular AdaBoost (Freund and Schapire, 1995) algorithm have been

proposed for multiclass problems. The modified versions of Ada-
Boost solve multiclass problems by reformulating them into series
of binary class problems.

1.1. Related research

However, the limitations of these algorithms in their naive
form, is that they are not designed to take advantage of coarse-
to-fine approaches and are therefore ill suited for computationally
demanding domains. The most current assessment by experts in
the field concludes that the application of coarse-to-fine ap-
proaches. in the form of cascaded classifiers, to the challenges of
multiclass learning is still an open problem (Zhang and Ma,
2012). The most common methods have involved either construct-
ing separate parallel cascades for each class or building cascaded
detector trees (Lienhart et al., 2003). Recently, the most notable
contributions to the design of integrated multiclass cascaded clas-
sifiers have been by Verschae and del Solar (2010). In their re-
search, a multiclass boosting algorithm called VectorBoost
(Huang et al., 2007) was combined with a domain-partitioning
weak classifier in order to produce compact and robust multi-view
face detection classifiers.

In this paper, we propose a coarse-to-fine multiclass learning
method that decomposes the training and detection task into cas-
cades of boosted ensembles. We show how it can be used to con-
vert single-layer multiclass algorithms like AdaBoost.M2 (Freund
and Schapire, 1995), AdaBoost.OC (Schapire, 1997) and Ada-
Boost.ECC (Guruswami and Sahai, 1999) into multi-layer cascaded
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classifiers. In order to maintain lower computational demands, we
demonstrate how effective classifiers can be trained on difficult
datasets using only decision stumps. We also present a new weak
learner and show how it can be combined with the cascaded archi-
tecture to attain arbitrarily low training errors and accurate classi-
fiers compared to current multiclass AdaBoost approaches.

The succeeding section describes the details of our cascaded
multiclass architecture and the proposed weak learner. We subse-
quently describe the implementation of the experiments on 18
benchmark multiclass University of California at Irvine (UCI)
(Frank and Asuncion, 2010) datasets, whose results we discuss in
the remainder of the paper.

2. Multiclass cascade learning

The underlying principle of the proposed multiclass cascade is
the separate-and-conquer strategy. As such, it bears some concep-
tual similarities to the rule-based RIPPER (Cohen, 1995) algorithm.
The algorithm refines the cascaded classifier in a stepwise fashion
by continuously removing class labels which it has learned best, in
order to focus on more difficult classes.

Given a training set D ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg where xi is a sam-
ple vector xi 2 X and yi is a class label yi 2 Y and Y 2 f1; . . . ; kg, the
multiclass algorithm constructs a cascade classifier Hk�1 that con-
sists of k� 1 number of layers. Each layer i is specifically trained
to predict a single class label c, as Hc

i ðxÞ 2 Y , otherwise the predic-
tion is passed onto Hc

iþ1ðxÞ.
The cascaded classifier Hk�1 is also two dimensional, whereby

each layer contains within it a further nested cascade Hc
i;j (Fig. 1).

The nested cascade facilitates the coarse-to-fine learning of each
layer, which enables the convergence to low training error rates.
For clarity we will refer to each layer j of a nested cascade denoted
as a pair of ðMj;BjÞ, as nodes. Mc

j ðxÞ denotes a multiclass node
whose prediction c 2 Y and c – Hc

i;jðxÞ, while Bj denotes a binary
predictor whose output is BjðxÞ 2 f�1;1g.

The cascade training proceeds as follows: in the first layer Hi,
the initial multiclass node Mi;j is trained on all samples using a gen-
eric multiclass algorithm until a predefined number of boosting
iterations U are completed. Once this criterion is met, node Mi;j is
assessed for accuracy based on individual class error rates. The
most separable class label c is then identified for separation and as-
signed to node Mc

i;j as its target class for prediction.
All correctly predicted samples ðMc

i;jðxiÞ ¼ cÞ ^ ðyi ¼ cÞ are then
trained against all the incorrectly predicted samples as class
ðMc

i;jðxiÞ ¼ cÞ ^ ðyi – cÞ, using a binary learning approach. The
resulting binary node Bi;j functions as an auxiliary node to the mul-
ticlass node. The auxiliary node Bi;j is trained until all the false po-
sitive samples with respect to class c have been correctly learned.
All correctly learned samples ðMc

i;jðxiÞ ¼ cÞ ^ ðyi ¼ cÞ ^ ðBi;jðxiÞ ¼ 1Þ,
belonging to class c are then removed from subsequent training
of layer Hi. The training of node Mi;jþ1 proceeds as with the initial
node; howbeit, with k� j class labels to learn.

The coarse-to-fine learning continues until all the most separa-
ble class labels and their instances have been removed from layer
Hi. If at the end of the layer training, there remain instances which
have not been correctly learned and associated with correct class
labels, then a final binary node FBi;j is trained, whose output is
f�1;1g. In the training of the FBi;j node, the incorrectly learned
samples are designated as negatives, while the instances belonging
to the last remaining class label c as the positives. The binary train-
ing proceeds until a predetermined error rate is achieved. Subse-
quently, the class label c is assigned as the predictor for layer Hc

i .
All instances belonging to class label c are eliminated from further
training of layers Hiþ1. In turn, each succeeding Hiþ1 layer with k� i
class labels reduces the computational demands and the complex-
ity of class separability.

Removing class instances with the lowest error rate directly af-
fects the rate at which the complexity of computation subsides and
the class separability of the remaining sub-tasks are reduced. Class
labels with a high accuracy result in the removal of a larger num-
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Fig. 1. Architecture of the proposed multiclass cascaded framework.
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