Pattern Recognition Letters 34 (2013) 1037-1045

Contents lists available at SciVerse ScienceDirect

Pattern Recognition Letters

Pattern Recognition
Letters

journal homepage: www.elsevier.com/locate/patrec i g |

Feature extraction based on Lp-norm generalized principal component analysis

Zhizheng Liang **, Shixiong Xia? Yong Zhou?, Lei Zhang?, Youfu Li"

2 Dept. of Computer Science, China University of Mining and Technology, China

b Dept. of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Hong Kong

ARTICLE INFO ABSTRACT

Article history:
Received 11 August 2012
Available online 15 February 2013

Communicated by S. Sarkar

Keywords:
Generalized PCA
Lp-norm
Convex function
Face images

UCI data sets

In this paper, we propose Lp-norm generalized principal component analysis (PCA) by maximizing a class
of convex objective functions. The successive linearization technique is used to solve the proposed opti-
mization model. It is interesting to note that the closed-form solution of the subproblem in the algorithm
can be achieved at each iteration. Meanwhile, we theoretically prove the convergence of the proposed
method under proper conditions. It is observed that sparse or non-sparse projection vectors can be
obtained due to the applications of the Lp norm. In addition, one deflation scheme is also utilized to
obtain many projection vectors. Finally, a series of experiments on face images and UCI data sets are car-
ried out to demonstrate the effectiveness of the proposed method.
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1. Introduction

Principal component analysis (PCA) is one of the most widely
used statistical techniques for dimensionality reduction. It is
known that standard PCA constructs the optimal subspace approx-
imation of data in terms of the quadratic error criterion. Due to its
least squares formulation, PCA is highly sensitive to contaminated
data. To alleviate the effect of contaminated data, many robust PCA
methods (Black and Jepson, 1996; Torre and Black, 2001; Torre and
Black, 2003; Aanas et al., 2002; Ke and Kanade, 2005; Ding et al.,
2006; Liang and Li, 2010) have been proposed during past several
years. In order to keep the rotational invariance property, Ding
et al. (2006) devised a robust covariance matrix which can soften
the effect of outliers. Black and Jepson (1996) replaced the qua-
dratic error norm with a robust one in terms of an m-estimator
technique. In (Kwak, 2008), a simple yet effective algorithm based
on L1-norm optimization techniques is proposed to deal with con-
taminated data and the solution has a rotational invariance prop-
erty. Based on this, Pang and Yuan (2010) applied the L1 norm to
handle the problem of graph embedding. In addition, Pang et al.
(2010) also generalized Kwak’s method to deal with tensor data
(Yang and Yang, 2002; Yang et al., 2004).

Some robust methods mentioned above try to overcome the
drawbacks of standard PCA in dealing with contaminated data.
However, the solution from these algorithms is generally not
sparse. It is noted that sparsity is very important in most cases as
it provides physical interpretations and improves the generaliza-
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tion performance in learning algorithms. As a result, some sparse
PCA algorithms (Wright et al., 2009; Luss and Teboulle, 2011) have
been proposed. Most sparse PCA algorithms involve solving a hard
combinational problem. For example, Zou et al. (2006) proposed
sparse principal component analysis (SPCA) based on the elastic
net. Luss and Teboulle (2011) derived a convex relaxation for car-
dinality constraints based on a representation of the L1 norm. La-
ter, Sriperumbudur et al. (2011) further proposed the sparse
generalized eigenvalue problem. In fact, these sparse methods
have been successfully used to extract sparse and interpretable
components from the given raw data.

Note that the sparse PCA algorithms above generally impose LO
norm or L1 norm constraints on projection vectors. To the best of
our knowledge, there is no study on imposing the general norm for
PCA and its variants. To this end, we propose the Lp norm constraint
for generalized principal component analysis (GPCA) in this paper.
We refer to this new model as Lp norm GPCA. This new model not
only suppresses the contaminated data by choosing robust func-
tions, but also provides sparse or non-sparse solutions by applying
the Lp norm. As a result, this offers a general scheme for PCA and
its some variants. To solve the optimization problem, we use the suc-
cessive linearization technique. We also theoretically show the con-
vergence of the iterative algorithm. Experiments on face images and
the datasets from the UCI machine learning repository are done to
demonstrate the effectiveness of the proposed method.

2. Related work

Let X = [X1,---,&,] € R" be a collection of n data points. Data
points can be reduced to y;,=G'x; by a projection matrix
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G € ®R™™, Without loss of generality, {x;}/_, are assumed to have
zero mean. In fact, this is easily obtained by a translation of data.

2.1. Classical PCA

In PCA, the optimal m(< d) dimensional linear subspace can be
obtained by minimizing the following error function:

n d m 2
@gmx—cvﬁz_§:§:<@—§:%v0 : (1)
i =1 j=1 k=1

where G € R?*™ is a projection matrix whose jth element in the kth
column is g’,'w V e ®™" is a coefficient matrix whose kth compo-
nent in the ith column is o¥, x{ denotes the jth component of x;,
and || - || denotes the Frobenius norm of a matrix.

2.2. L1PCA

Kwak (2008) proposed to maximize the L1 dispersion using the
L1-norm in the projection space instead of minimizing the L1 error
function in the original d-dimensional input space. The optimiza-
tion problem is

n
w'=argmax » |[w'xi],

i1 (2)
s.t.|w|, =1.

2.3. Sparse PCA

The sparse PCA problem (Luss and Teboulle, 2011) in the case of
the covariance matrix is described as follows:

w* = argmax(w' XX w),
st wll, =1, [w]l <k or[[w]|; <k,

3)

where k is a parameter controlling the sparsity of projection vec-
tors. Recently, Journee et al. (2011) also proposed two single-unit
optimization formulations of the sparse PCA problem based on L1
or LO norm penalties.

3. Our proposed method
3.1. Lp norm GPCA

Inspired by robust PCA or sparse PCA, we propose the following
optimization problem to obtain the projection vector w:

w = arg mvﬁlxzn}ﬁ(WTXi% 4)
i

st w|p<1,p>0,

where ||w]|, = (Zd: [wi|")!'”? and w; is the ith component of vector w.
The function ¢(s}: (—co, +o0) — [0, +o0) in Eq. (4) should satisfy
the following conditions: (1) ¢(s) is a continuously convex function
and its (sub)gradient at each point lies in a compact set; (2) ¢(s) is
an even function, i.e., ¢(s) = ¢(—s). Note that w'x; is an affine func-
tion and ¢( ) is a convex function, so the composition of them is also
a convex function. As a result, the objective function is convex with
respect to w. It is known that the solution from the maximization of
a convex function over a compact set is achieved at an extreme
point. When the objective function is not strictly convex, one may
obtain the global optimum at non-extreme points. However, one
may always find the optimal solution of Eq. (4) from extreme
points. If there are infinite extreme points for the constraint set, it
is impractical to find the optimal solution by checking extreme
points. In the following, we give two remarks for the parameter p.

Remark 1. When p =1 in Eq. (4), it is easy to obtain the extreme
points of the constraint set, ie.,
w;=+1, Wy,---Wi_g, Wigq---wy=0,i=1,---,d. Specifically,
there are 2d extreme points for this constraint set. One may find
the optimal solution from these extreme points. Thus the projec-
tion vector only contains one nonzero component. This corre-
sponds to selecting one feature if one projection vector is used.
Note that the optimal solution may be obtained at non-extreme
points if the objective function is not strictly convex.

Remark 2. When p in Eq. (4) takes the infinity, there are 2d
extreme points for the constraint set, i.e., w; = £1, i = 1,---,d. This
produces the so-called binary GPCA if we search the optimal solu-
tion from extreme points. This may be beneficial in some cases
where the dot product operation in obtaining projected data can
be effectively computed by addition operations instead of multipli-
cation operations, which is shown in (Pang et al., 2009). However,
as the dimension (d) of samples grows, the number of extreme
points exponentially increases. Moreover, it is NP-hard from the
complexity of viewpoints.

In addition, one can observe from Eq. (4) that the function ¢( )
should be given in advance. In real applications, in order to sup-
press contaminated data, one may further restrict the range of con-
vex functions. For example, ¢() increases more slowly than a
quadratic function, i.e., lim @ = 0. For clarity, we list some convex
functions used in “Eq. (4): (i) #@6s)=1s’, 0=1; (i)

¢(s) = max(|s| — 0,0); (iii) $(s) = max(|s| — 0,0)%; (iv)
b(s) = V2 + 0 (v)
o(s) =s2if |s| < 0, ¢(s) =0(0+2|s — 0)) if |s| > 6.

The main aim of adopting convex functions in our optimization
problem is to guarantee that the objective function in Eq. (4) is
convex. Thus there are some effective algorithms in global optimi-
zation that can be used to solve Eq. (4). In this paper, we adopt the
successive linearization technique (SLT) to solve Eq. (4) as done in
(Bradely and Mangasarian, 1998; Journee et al., 2011). First, we lin-
earizate the objective function in Eq. (4) at w in the kth iteration.

n

Wi — argmax(> g w) + (W' — wi)> g (w)x])
=1

i= i=1
st.[lw]py <1, p>0.

()

For clarity, we briefly describe how to solve Eq. (4) in terms of
SLT in Algorithm 1.

Algorithm 1: the solution to Eq. (4)

Set k=0, w©® is a column vector whose Lp norm is 1
While passing the stopping criterion
k:i=k+1
if w® is a non-differential point
find some subgradient at w® which is different from the
previous (sub)gradient at w*-1 to compute w*+1) by Eq.
(5%
else
solve Eq. (5) to obtain wk+1);
end if
End while

It is observed that at each iteration in Algorithm 1, one needs to
solve an optimization problem with the linear objective function
and nonlinear constraints, i.e., Eq. (5). Since ¢ is a convex function
and may not be differential, e.g., ¢(s) = |s|, we use ¢’ to denote any
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