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a b s t r a c t

Multi-output regression aims at learning a mapping from a multivariate input feature space to a multi-
variate output space. Despite its potential usefulness, the standard formulation of the least-squares sup-
port vector regression machine (LS-SVR) cannot cope with the multi-output case. The usual procedure is
to train multiple independent LS-SVR, thus disregarding the underlying (potentially nonlinear) cross
relatedness among different outputs. To address this problem, inspired by the multi-task learning meth-
ods, this study proposes a novel approach, Multi-output LS-SVR (MLS-SVR), in multi-output setting. Fur-
thermore, a more efficient training algorithm is also given. Finally, extensive experimental results
validate the effectiveness of the proposed approach.

� 2013 Published by Elsevier B.V.

1. Introduction

By changing the inequality constraints in the support vector
regression machine (SVR) (Vapnik, 1999; Vapnik, 1998) by the
equality ones, the least-squares SVR (LS-SVR) (Saunders et al.,
1998; Suykens and Vandewalle, 1999; Suyken et al., 2002) replaces
convex quadratic programming problem with convex linear sys-
tem solving problem, thus largely speeding up training. It has been
shown through a meticulous empirical study that the generaliza-
tion performance of the LS-SVR is comparable to that of the SVR
(Van Gestel et al., 2004). Therefore, the LS-SVR has been attracting
extensive attentions during the past few years, such as (An et al.,
2009; Choi, 2009; Xu et al., 2011b; Xu et al., 2011a) and references
therein.

Multi-output regression aims at learning a mapping from a
multivariate input space to a multivariate output space. Compared
with the counterpart classification problem—multi-label classifica-
tion problem (Tsoumakas and Katakis, 2007), the multi-output
regression problem remains largely under-studied. To the best of
our knowledge, only PLS (Partial Least Squares) regression (Abdi,
2003), kernel PLS regression (Rosipal and Trejo, 2001), MSVR (Mul-
ti-output SVR) (Tuia et al., 2011), and multi-output regression on
the output manifold (Liu and Lin, 2009) have been put forward in
literatures. What is more, it is difficult to generalize directly mul-
ti-label classification methods to counterpart regression ones.

Despite its potential usefulness, the standard formulation of the
LS-SVR cannot cope with the multi-output case. The usual proce-
dure considers developing a different LS-SVR to learn each param-
eter individually. That is to say, traditional approach treats the
different outputs separately in the multi-output case, thus disre-
garding the underlying (potentially nonlinear) cross relatedness
among different outputs. However, when there are relations be-
tween different outputs, it can be advantageous to learn all outputs
simultaneously.

Then the problem is how to model the relatedness between
different outputs. In fact, some clues from some multi-task
learning methods such as hierarchical Bayesian methods (Bakker
and Heskes, 2003; Heskes, 2000; Allenby and Rossi, 1998; Arora
et al., 1998), which are based on some formal definition of the
notion of relatedness of the tasks, motivate this work. Evgeniou
and his coworkers (Evgeniou and Pontil, 2004; Evgeniou et al.,
2005) proposed a regularized multi-task learning method by fol-
lowing the intuition of Hierarchical Bayes (Heskes, 2000; Allenby
and Rossi, 1998; Arora et al., 1998). Our previous work (Xu et al.,
2011b) is also based on the intuition with general setting. But,
this paper restricts us to multi-output setting, since this setting
permits us to design a more efficient training algorithm.

The organization of the rest of this paper is as follows. After LS-
SVR for both single-output and multi-output cases are briefly de-
scribed in Section 2, a novel multi-output regression approach,
MLS-SVR, is proposed in Section 3. Similar to the LS-SVR, one only
solves a convex linear system in the training phrase, too. In Sec-
tion 4 and Section 5, extensive experimental evaluations are con-
ducted, and Section 6 concludes this work.
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Notation
The following notations will be used in this study. Let R be the

set of real numbers and Rþ the subset of positive ones. For every
n 2 N, the set of positive integers, we let Nn ¼ f1;2; . . . ;ng. A vec-
tor will be written in bold case x 2 Rd with xi as its i-th elements.
The transpose of x is written as xT. The vector
1d ¼ ½1;1; . . . ;1�T 2 Rd and 0d ¼ ½0;0; . . . ;0�T 2 Rd. The inner prod-
uct between two vectors is defined as xTz ¼

Pd
k¼1xkzk.

Matrices are denoted by capital bold letters A 2 Rm�n with Ai;j as
its ði; jÞ-th elements. The transpose of A is written as AT. If A is an
m� n matrix, we denote by ai 2 Rm and aj 2 Rn the i-th row and
the j-th column of A, respectively. If A is an m�m matrix, we de-
fine traceðAÞ :¼

Pm
i¼1Ai;i. The identity matrix of dimension m�m is

written as Im.
The function repmatðA;m;nÞ or repmatðx;m;nÞ creates a large

block matrix consisting of an m� n tiling of copies of A or x. The
function blockdiagðA1;A2; . . . ;AnÞ or blockdiagðx1;x2; . . . ;xnÞ creates
a block diagonal matrix, having A1;A2; . . . ;An or x1;x2; . . . ;xn as
main diagonal blocks, with all other blocks being zero matrices.

2. Least-squares support vector regression machine (LS-SVR)

2.1. Single-output case

The single-output regression is regarded as finding the mapping
between an incoming vector x 2 Rd and an observable output y 2 R

from a given set of independent and identically distributed (i.i.d.)
samples, i.e., fðxi; yiÞg

l
i¼1. Let y ¼ ðy1; y2; . . . ; ylÞ

T 2 Rl. The single-
output LS-SVR solves this problem by finding w 2 Rnh and b 2 R

that minimizes the following objective function with constraints:

min
w2Rnh ;b2R

J ðw; nÞ ¼ 1
2

wTwþ c
1
2

nTn; ð1Þ

s:t: y ¼ ZTwþ b1l þ n; ð2Þ

where Z ¼ ðuðx1Þ;uðx2Þ; . . . ;uðxlÞÞ 2 Rnh�l;u : Rd ! Rnh is a
mapping to some higher (maybe infinite) dimensional Hilbert
space H (also known as feature space) with nh dimensions,
n ¼ ðn1; n2; . . . ; nlÞT 2 Rl is a vector consisting of slack variables,
and c 2 Rþ is a positive real regularized parameter.

The Lagrangian function for the problem 1,2 is

Lðw; b; n;aÞ ¼ J ðw; nÞ � aTðZTwþ b1l þ n� yÞ; ð3Þ

where a ¼ ða1;a2; . . . ;alÞT 2 Rl is a vector consisting of Lagrange
multipliers. The Karush–Kuhn–Tucker (KKT) conditions for optimal-
ity yield the following set of linear equations:

@L
@w ¼ 0 ) w ¼ Za;
@L
@b ¼ 0 ) aT1l ¼ 0;
@L
@n ¼ 0 ) a ¼ cn;

@L
@a ¼ 0 ) ZTwþ b1l þ n� y ¼ 0l:

8>>>><
>>>>:

ð4Þ

By eliminating w and n, one can obtain the following linear
system:

0 1T
l

1l H

" #
b

a

� �
¼

0
y

� �
; ð5Þ

with the positive definite matrix H ¼ Kþ c�1Il 2 Rl�l. Here,
K ¼ ZTZ 2 Rl�l is defined by its elements Ki;j ¼ uðxiÞTuðxjÞ ¼
jðxi;xjÞ for 8ði; jÞ 2 Nl �Nl, and jð�; �Þ is a kernel function meeting
the Mercer’s theorem (Vapnik, 1999; Vapnik, 1998).

However, it is more difficult to solve directly the linear system
(5), since its coefficient matrix is not positive definite. This can be
overcome by reformulating it into the following one (Suyken et al.,
2002; Suykens et al., 1999)

s 0T
l

0l H

" #
b

aþ bH�11l

� �
¼ 1T

l H�1y
y

" #
; ð6Þ

where s ¼ 1T
l H�11l 2 Rþ. This new linear system (6) has a unique

solution, and thus opens many opportunities for using fast and effi-
cient numerical optimization methods. In fact, the solution of the
problem (6) can be found by the following three steps (Suyken
et al., 2002; Suykens et al., 1999):

1. Solve g; m from Hg ¼ 1l and Hm ¼ y;
2. Compute s ¼ 1T

l g;
3. Find solution: b ¼ gTy=s;a ¼ m� bg.

Therefore, the solution of the training procedure can be found
by solving two sets of linear equations with the same positive
definite coefficient matrix H 2 Rl�l. Since H is positive definite,
one typically first finds the Cholesky decomposition H ¼ LLT.
Then since L is lower triangular, solving the system is simply a
matter of applying forward and backward substitution. Other
commonly used methods include the conjugate gradient, single
value decomposition (SVD) or eigendecomposition, etc.

Let the solution of (5) be a� ¼ ða�1;a�2; . . . ;a�l Þ
T and b�. Then, the

corresponding decision function is

f ðxÞ ¼ uðxÞTw� þ b� ¼ uðxÞTZa� þ b� ¼
Xl

i¼1

a�i uðxÞ
TuðxiÞ þ b�

¼
Xl

i¼1

a�i jðx;xiÞ þ b�: ð7Þ

Thus, the single-output LS-SVR can be solved using only inner
products between uð�Þs, not needing to know the nonlinear
mapping. However, in contrast to SVR, a� is not sparse. This
means that the whole training set needs to be used at prediction
time.

2.2. Multi-output case

One can easily extend the single-output regression to the
multiple output case (An et al., 2009). Let Y ¼ ½yi;j� 2 Rl�m. Given
a set of i.i.d. samples fðxi; yiÞgl

i¼1 with xi 2 Rd and yi 2 Rm, the
multi-output regression aims at predicting an output vector
y 2 Rm from a given input vector x 2 Rd. That is to say, the mul-
ti-output regression problem can be formulated as learning a
mapping from Rd to Rm. The multi-output LS-SVR (MLS-SVR)
solves this problem by finding W ¼ ðw1;w2; . . . ;wmÞ 2 Rnh�m

and b ¼ ðb1; b2; . . . ; bmÞT 2 Rm that minimizes the following objec-
tive function with constraints:

min
W2Rm�nh ;b2Rm

J ðW;NÞ ¼ 1
2

traceðWTWÞ þ c
1
2

traceðNTNÞ; ð8Þ

s:t: Y ¼ ZTWþ repmatðbT
; l;1Þ þ N; ð9Þ

where N ¼ ðn1; n2; . . . ; nmÞ 2 Rl�m
þ .

On closer examination, it is not difficult to see that this is
equivalent to m optimization problems similar to the problem
1,2. That is to say, the solution to the regression problem 8,9
decouples between the different output variables, and we need
only compute a single inverse matrix, which is shared by all of
the vectors wið8i 2 NmÞ. But it is much more efficient to solve
8,9 directly than to solve 1,2 m times, since they all share the
same matrix H 2 Rl�l, the inverse matrix of which need be com-
puted only once with the Cholesky decomposition, conjugate
gradient, or SVD, etc.
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