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In the area of pattern recognition, it is common for few training samples to be available with respect to
the dimensionality of the representation space; this is known as the curse of dimensionality. This problem
can be alleviated by using a dimensionality reduction approach, which overcomes the curse relatively
well. Moreover, supervised dimensionality reduction techniques generally provide better recognition
performance; however, several of these tend to suffer from the curse when applied directly to high-
dimensional spaces. We propose to overcome this problem by incorporating additional information to
supervised subspace learning techniques using what is known as tangent vectors. This additional informa-
Dimensionality reduction tion accounts for the possible differences that the sample data can .su.ffer. In fact, this can be seen as a way
Tangent vectors to model the unseen data and make better use of the scarce training samples. In this paper, methods
LDA for incorporating tangent vector information are described for one classical technique (LDA) and one
SRDA state-of-the-art technique (SRDA). Experimental results confirm that this additional information
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improves performance and robustness to known transformations.
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1. Introduction

In the area of pattern recognition, it is common for few training
samples to be available with respect to the dimensionality of the
representation space; this is known as the curse of dimensionality
(Bellman, 1961). To handle this problem, it has become popular
to use dimensionality reduction (also known as subspace learning)
as a preprocessing step. However, several dimensionality reduction
techniques also struggle due to the lack of samples, or in other
words, they are also affected by the curse. In these cases, a tandem
strategy is often used by applying a more robust technique as an
initial step. This strategy, though less useful from the discrimina-
tive point of view, reduces the dimensionality down to a more
appropriate size for the subsequent discriminative dimensionality
reduction. The most well-known tandem is PCA + LDA (Yang and
Yang, 2003; Yang et al., 2005), i.e., where Principal Component
Analysis is performed over the original representation space and
afterwards Linear Discriminant Analysis (Fukunaga, 1990) is ap-
plied. Note that PCA is an unsupervised technique, whereas LDA
is supervised, which is crucial since the use of a supervised tech-
nique generally helps to boost the recognition performance
considerably.

The motivation for this paper was to improve supervised sub-
space learning techniques so that they are able to cope with scarce
data in high-dimensional feature spaces. Even though a tandem
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strategy overcomes the curse of dimensionality for the less robust
supervised subspace learning techniques, it would clearly be more
desirable for these techniques to work well in high-dimensional
spaces, up to the point of not necessarily requiring a previous
dimensionality reduction. This goal is addressed in this paper by
considering the known transformations that a sample can exhibit
which do not modify the class membership. In fact, we can con-
sider that these known transformations model the unseen samples
(as if increasing the training set), thereby overcoming the curse of
dimensionality. Consider for instance the rotations and displace-
ments of facial images due to imperfect alignments. Even though
these variations are expected to appear, it is known that they do
not change the identity of the person appearing in the image.
One method to account for the possible combinations of these base
transformations is the tangent distance (Simard et al., 1993); how-
ever, it is only applicable to distance-based classifiers. In this work
only the tangent vectors are used as a way to obtain more informa-
tion from the training set, without imposing any restrictions on the
classifier. Related to this paper, Scholkopf et al. (1997) and Mika
et al. (1999) use the tangent vectors to improve Support Vector
kernels and make them somewhat invariant to the tangent vector
transformations.

The paper addresses two supervised techniques: the first is the
classic LDA (including the PCA + LDA variant), and the second is the
state-of-the-art Spectral Regression Discriminant Analysis (SRDA)
(Cai et al., 2008; Chen et al., 2009). In the literature, there are many
other methods that could be considered (see for instance Burges
(2005) and van der Maaten and Postma (2009) for a review of some
of them). Nevertheless, the techniques we have chosen are known
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to perform well and illustrate an idea which could be applied to
other methods in future works.

The contributions of the paper are the following. First, we refor-
mulate LDA so that it is expressed in terms of the covariance ma-
trix, which can be better estimated by using tangent vectors (see
Section 3.1). This modification helps to overcome the singularity
problems that LDA has when there are few training samples, im-
proves recognition performance, and also increases the robustness
of the learned subspace to known transformations. Second, we
present a method to incorporate the tangent vector information
in SRDA that keeps the characteristic of being solvable by systems
of linear equations, thus continuing to be efficient for learning (see
Section 3.2). Also, the recognition performance improves and the
robustness of the learned subspaces to known transformations in-
creases. Finally, in Section 4, we present empirical results that con-
firm the benefits when using the proposed modifications.

2. Preliminaries and overview of the tangent vectors

Suppose we have a point X € R? generated from an underlying
distribution, and that the possible transformations or manifold of
X is given by t(x, &), a function which depends on a parameter vec-
tor & € R" with the characteristic that t(x, 0) = X. The dimensional-
ity of a is essentially the degrees of freedom of possible variations
that X can have. In real applications, the manifold t(x, &) is highly
non-linear; however, for values close to & = 0, it can be reasonable
to approximate it by a linear subspace. This can also be interpreted
as representing the manifold by its Taylor series expansion evalu-
ated at a =0, and discarding the second and higher order terms
(Simard et al., 1998), i.e.,
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The partial derivatives v, = af/ Ouy are known as the tangent vectors,
since they are tangent to the transformation manifold t at point x.

The concept of the tangent vector approximation is illustrated
in Fig. 1 for a single direction of variability. As can be observed,
the approximation can be quite good for small values of ||a||; how-
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Fig. 1. Top: Anillustration of the linear approximation of transformations by means
of tangent vectors. Bottom: An example of an image rotated at various angles and
the corresponding rotation approximations using a tangent vector.

ever, as the norm ||a|| increases, the deviation from the true man-
ifold t is expected to increase.

When comparing two points, as a similarity measure between
them, it would be ideal to use the minimum distance between their
respective transformation manifolds. As an approximation to this,
one can use the minimum distance between the subspaces
spanned by the tangent vectors (Simard et al., 1998), which is
known as the tangent distance (TD). The single-sided tangent dis-
tance considers only one of the tangent subspaces and has the
advantage of being more efficient to compute (Dahmen et al.,
2001). From a classification perspective, the tangent subspace
can either be for the reference (RTD) or the observation (OTD).

2.1. Estimation of tangent vectors

There are several methods to estimate the tangent vectors,
although, unfortunately, there is no general way to estimate them
for every task. The most intuitive method is to use the difference
between the sample and its transformation as tangent vectors.
However, this method can only be used if it is possible to generate
a transformation of a sample. The most well-known method of
estimating tangent vectors is the one proposed by Simard et al.
(1998). This method is only applicable to image based problems,
having been employed successfully to model the following: scal-
ing, rotation, vertical and horizontal translation, parallel and diag-
onal hyperbolic transformations, and trace thickening.

There are other methods that try to estimate the tangent vec-
tors from the training set, instead of adding some prior knowledge.
One method of this type is presented in (Keysers et al., 2004),
which is based on maximum likelihood estimation. Another meth-
od is to use the difference between a sample and its nearest neigh-
bors from the same class as tangent vectors.

The methods of Simard and the nearest neighbors were used in
the experiments. However, as discussed in Section 3 and empiri-
cally observed, the latter is less useful since it does not provide
as much additional information and it does not help to overcome
the singularity problems.

3. Tangent vectors in subspace learning
3.1. Tangent vectors in LDA

The objective of LDA is that the obtained subspace should dis-
criminate the classes well. To this end, LDA simultaneously maxi-
mizes the distances between the class centers (between-class
scatter matrix) and minimizes the distances within each class
(within-class scatter matrix). It is straightforward to reformulate
LDA so that it is stated in terms of the covariance matrix X, and
a normalized between-class scatter matrix X,. The objective func-
tion is then

Tr(B'L,B)

Tr(B'LB) 3

B = arg max
B

The solution of the LDA objective (3) is the following generalized
eigenvalue decomposition

£,B=XBA, (4)

with A being a diagonal matrix of generalized eigenvalues and the
columns of B being the generalized eigenvectors.

By having a solution of LDA in terms of the covariance matrix,
for a given dataset X = {X;,...,Xy}, we are able to use a better
empirical estimation for X, that considers tangent vectors (Keysers
et al., 2004) given by
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