
Using continuous features in the maximum entropy model q

Dong Yu *, Li Deng, Alex Acero
Microsoft Research, One Microsoft Way, Redmond, WA 98052, United States

a r t i c l e i n f o

Article history:
Received 16 October 2008
Received in revised form 11 May 2009
Available online 24 June 2009

Communicated by R.C. Guido

Keywords:
Maximum entropy principle
Spline interpolation
Continuous feature
Maximum entropy model
Moment constraint
Distribution constraint

a b s t r a c t

We investigate the problem of using continuous features in the maximum entropy (MaxEnt) model. We
explain why the MaxEnt model with the moment constraint (MaxEnt-MC) works well with binary fea-
tures but not with the continuous features. We describe how to enhance constraints on the continuous
features and show that the weights associated with the continuous features should be continuous func-
tions instead of single values. We propose a spline-based solution to the MaxEnt model with non-linear
continuous weighting functions and illustrate that the optimization problem can be converted into a
standard log-linear model at a higher-dimensional space. The empirical results on two classification tasks
that contain continuous features are reported. The results confirm our insight and show that our pro-
posed solution consistently outperforms the MaxEnt-MC model and the bucketing approach with signif-
icant margins.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The maximum entropy (MaxEnt) model with moment con-
straints (MaxEnt-MC) on binary features has been shown effective
in natural language processing (NLP) (e.g., Berger et al., 1996),
speaker identification (e.g., Ma et al., 2007), statistical language
modeling (e.g., Rosenfeld, 1996), text filtering and cleaning (e.g.,
Yu et al., 2005a), machine translation (e.g., Och and Ney, 2002),
phonotactic learning (e.g., Hayes, 2008), visual object classification
(e.g., Gong et al., 2004), economic modeling (e.g., Arndt et al.,
2002), and network anomaly detection (e.g., Gu et al., 2005). How-
ever, it is not very successful when non-binary (e.g., continuous)
features are used. To improve the performance, quantization tech-
niques such as bucketing (or binning) have been proposed to con-
vert the continuous features into binary features. Unfortunately,
quantization techniques provide only limited performance
improvement due to its intrinsic limitations. A coarse quantization
may introduce large quantization errors and wash out the gain ob-
tained from using the converted binary features, and a fine quanti-
zation may increase the number of model parameters dramatically
and introduce parameter estimation uncertainties.

In this paper, we examine the MaxEnt model and the principle
behind it. We bring the insight that the key to the success of using
the MaxEnt model is providing appropriate constraints. We show
that moment constraints on binary features are very strong and
fully regularize the distribution of the features. However, moment
constraints on continuous features are rather weak and as a result
much information contained in the training set is not used by the
MaxEnt model. Therefore, using continuous features is less effec-
tive than using binary features in the MaxEnt-MC model.

We further discuss how stronger constraints can be included for
continuous features by using quantization techniques. We extend
the quantization technique to its extreme to introduce the distri-
bution constraint and show that the weights associated with con-
tinuous features in the MaxEnt model should not be single values
but continuous functions. In other words, the optimization prob-
lem is no longer a log-linear problem but a non-linear problem
with continuous weighting functions as parameters. We solve this
non-linear optimization problem by approximating the continuous
weighting function with spline interpolations we recently devel-
oped in our variable parameter hidden Markov model (VPHMM)
work (Yu et al., 2008, in press). We demonstrate that by using
the spline interpolation the optimization problem with non-linear
continuous weighting functions can be converted into a standard
log-linear problem at a higher-dimensional space where each con-
tinuous feature in the original space is mapped into several fea-
tures. With this transformation, the existing training and testing
algorithms (Nocedal, 1980; Riedmiller and Braun, 1993; Malouf,
2002) as well as the recently developed regularization techniques
(Chen and Rosenfeld, 1999, 2000; Goodman, 2004; Kazama,
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2004; Kazama and Tsujii, 2005) for the MaxEnt-MC model can be
directly applied in this higher-dimensional space making our
approach very attractive. We validate our insight and the effective-
ness of our approach on two classification tasks that contain
continuous features and show that our proposed solution consis-
tently outperforms the MaxEnt-MC model and the quantization-
based approach with significant margins.

The rest of the paper is organized as follows. In Section 2, we
examine the MaxEnt model and discuss why the MaxEnt model
with moment constraints performs well for binary features but
not for continuous features. In Section 3, we illustrate that contin-
uous weighting functions (instead of single weight values) should
be used for continuous features and propose a solution to the opti-
mization problem that contains continuous weighting functions by
approximating the weighting functions with spline interpolations.
We validate our insight and demonstrate the new approach’s supe-
riority over the MaxEnt-MC and quantization-based approaches
empirically on two classification tasks in Section 4, and conclude
the paper with discussions on many potential applications in Sec-
tion 5.

2. The MaxEnt model and constraints

In this section, we examine the MaxEnt principle and the Max-
Ent model and explain why the MaxEnt model with moment con-
straints works well for the binary features but not for the
continuous features by showing that the moment constraints on
binary features are strong while on continuous features weak.

2.1. The MaxEnt principle and MaxEnt model with moment constraints

We consider a random process that produces an output value y
from a finite set Y for an input value x. We assume that a training
set ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxN; yNÞ with N samples is given. The train-
ing set can be represented with the empirical probability
distribution

~pðx; yÞ ¼ number of times that ðx; yÞ occur
N

: ð1Þ

Our goal is to construct a stochastic model that can accurately rep-
resent the random process that generated the training set ~pðx; yÞ.
We denote pðy j xÞ as the probability of outputting by y the model
when x is given and assume that a set of constraints C is known
either from the training data and/or from a priori knowledge.

The MaxEnt principle (Guiasu and Shenitzer, 1985) dictates that
from all the probability distributions pðy j xÞ that accord with the
constraints C, we should select the distribution that is most uni-
form. Mathematically, we should select the distribution that max-
imizes the entropy

HðpÞ ¼ �
X
x;y

~pðxÞpðy j xÞ log pðyjxÞ; ð2Þ

over the conditional probability pðy j xÞ.
A typical type of constraints used in the MaxEnt model is mo-

ment constraints. Assume that a set of M features fiðx; yÞ,
i ¼ 1; . . . ;M is available, the moment constraint requires that the
moment of the features as predicted from the model should be
the same as that observed from the training set. In most cases only
the constraints on the first-order moment is used, i.e.,

Ep½fi� ¼ E~p½fi�; i ¼ 1; . . . ;M; ð3Þ

where Ep is the expected value over the distribution p defined as

Ep½fi� ¼
X
x;y

~pðxÞpðyjxÞfiðx; yÞ; ð4Þ

and E~p is the expected value over the distribution ~p defined as

E~p½fi� ¼
X
x;y

~pðx; yÞfiðx; yÞ ¼
X
x;y

~pðxÞ~pðyjxÞfiðx; yÞ: ð5Þ

A nice property of the MaxEnt model with moment constraints
(Berger et al., 1996) is that its solution is in the log-linear form
of

pðyjxÞ ¼ 1
ZkðxÞ

exp
X

i

kifiðx; yÞ
 !

; ð6Þ

where

ZkðxÞ ¼
X

y

exp
X

i

kifiðx; yÞ
 !

; ð7Þ

is a normalization constant to make sure
P

ypðyjxÞ ¼ 1, and ki is the
weight for the feature fiðx; yÞ and is chosen to maximize

WðkÞ ¼ �
X

x

~pðxÞlogZkðxÞ þ
X

i

kiE~p½fi�: ð8Þ

Since this dual problem is an unconstraint convex problem, many
algorithms such as generalized iterative scaling (GIS) (Darroch
and Ratcliff, 1972), gradient ascent and conjugate gradient (e.g., L-
BFGS) (Nocedal, 1980), and RPROP (Riedmiller and Braun, 1993)
can be used to find the solution. A comparison on the performance
of different learning algorithms can be found in (Malouf, 2002 and
Mahajan et al., 2006). Notice that applying the higher-order mo-
ment constraints in the MaxEnt model is equivalent to using high-
er-order statistics as features in the MaxEnt model with mean (i.e.,
first-order moment) constraint. The MaxEnt-MC model has been
improved with regularization techniques (Chen and Rosenfeld,
1999, 2000; Goodman, 2004) and uncertain constraints (Kazama,
2004; Kazama and Tsujii, 2005) in the recent years.

2.2. Moment constraints on binary features and continuous features

The MaxEnt principle basically says one should not assume any
additional structure or constraints other than those already im-
posed on the constraint set C. The appropriate selection of the con-
straints thus is crucial. In principle, we should include all the
constraints that can be validated by (or reliably estimated from)
the training set or prior knowledge.

With the binary features where fiðx; yÞ 2 f0;1g, the moment
constraint described in Eq. (3) is a strong constraint since
Ep½f � ¼ pðf ¼ 1Þ. In other words, constraining the expected value
implicitly constrains the probability distribution. However, the
moment constraint is rather weak for continuous features. Con-
straining the expected value does not mean much to the continu-
ous features because many different distributions can yield the
same expected value. That is to say, much information carried in
the training set is not used in the parameter estimation if solely
moment constraints are used for the continuous features especially
when the distribution of the features has multiple modes. This is
the most important reason that the MaxEnt-MC model works well
for binary features but not so well for non-binary features, espe-
cially the continuous features.

Let us illustrate this observation with an example. Consider a
random process that generates 0 with probability 1 if x 2 f1;3g,
and generates 1 with probability 1 if x 2 f2g, and assume that we
have a training set with the empirical joint distributions

~pð1;0Þ ¼ 0:25; ~pð1;1Þ ¼ 0;
~pð2;0Þ ¼ 0; ~pð2;1Þ ¼ 0:5;
~pð3;0Þ ¼ 0:25; ~pð3;1Þ ¼ 0;

ð9Þ

and features
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