Accepted Manuscript

Title: Synthesis and characterization of novel Sm_2O_3/S -doped g- C_3N_4 nanocomposites with enhanced photocatalytic activities under visible light irradiation

Authors: Milad Jourshabani, Zahra Shariatinia, Alireza Badiei

PII:	S0169-4332(17)32373-5
DOI:	http://dx.doi.org/doi:10.1016/j.apsusc.2017.08.051
Reference:	APSUSC 36888
To appear in:	APSUSC
Received date:	6-6-2017
Revised date:	4-8-2017
Accepted date:	7-8-2017

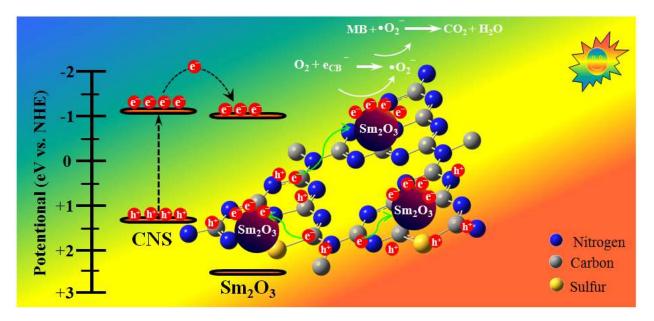
Please cite this article as: Milad Jourshabani, Zahra Shariatinia, Alireza Badiei, Synthesis and characterization of novel Sm2O3/S-doped g-C3N4 nanocomposites with enhanced photocatalytic activities under visible light irradiation, Applied Surface Sciencehttp://dx.doi.org/10.1016/j.apsusc.2017.08.051

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis and characterization of novel Sm₂O₃/S-doped g-C₃N₄ nanocomposites

with enhanced photocatalytic activities under visible light irradiation


Milad Jourshabani^a, Zahra Shariatinia^{a,*}, Alireza Badiei^{b,c}

^aDepartment of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P.O.Box:15875-4413, Tehran, Iran.

^bSchool of Chemistry, College of Science, University of Tehran, Tehran, Iran.

^cNanobiomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran.

Graphical Abstract

Highlights

- Sulfur-doped graphitic carbon nitride (CNS) materials were synthesized in situ.
- The Sm_2O_3/CNS photocatalysts containing different Sm_2O_3 contents were prepared.
- The Sm₂O₃(8.9)/CNS sample exhibited the highest methylene blue photodegradation.
- The optimum $Sm_2O_3(8.9)/CNS$ provided ~93% MB photodegradation after 150 min.
- Trapping tests proved that $\bullet O_2^-$ radical was the major oxidative species in the reaction.

^{*}Corresponding author. Tel.: +98 2164545810.

E-mail address: shariati@aut.ac.ir (Z. Shariatinia).

Download English Version:

https://daneshyari.com/en/article/5346798

Download Persian Version:

https://daneshyari.com/article/5346798

Daneshyari.com