
Class dependent feature scaling method using naive Bayes classifier
for text datamining

Eunseog Youn a, Myong K. Jeong b,*

a Department of Computer Science, Texas Tech University, Lubbock, TX 79409, USA
b Department of Industrial and Systems Engineering and RUTCOR (Rutgers Center for Operations Research), Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA

a r t i c l e i n f o

Article history:
Received 18 September 2007
Received in revised form 1 August 2008
Available online 24 December 2008

Communicated by L. Heutte

Keywords:
Classification
Feature selection
Naive Bayes classifier
Recursive feature elimination

a b s t r a c t

The problem of feature selection is to find a subset of features for optimal classification. A critical part of
feature selection is to rank features according to their importance for classification. The naive Bayes clas-
sifier has been extensively used in text categorization. We have developed a new feature scaling method,
called class–dependent–feature–weighting (CDFW) using naive Bayes (NB) classifier. A new feature scal-
ing method, CDFW–NB–RFE, combines CDFW and recursive feature elimination (RFE). Our experimental
results showed that CDFW–NB–RFE outperformed other popular feature ranking schemes used on text
datasets.

� 2008 Published by Elsevier B.V.

1. Introduction

Text data mining (Chakrabarti, 2000) is a research domain
involving many research areas, such as natural language process-
ing, machine learning, information retrieval (Salton, 1989), and
data mining. Text categorization and feature selection are two of
the many text data mining problems. The text document categori-
zation problem has been studied by many researchers (Joachims,
1997; Joachims, 1998; Lang, 1995; Leopold and Kindermann,
2002; McCallum and Kamal Nigam, 1998; Rennie, 2001; Rifkin,
2002; Salton, 1989; Yang and Pedersen, 1997). Yang et al. showed
comparative research on feature selection in text classification
(Yang and Pedersen, 1997). Many machine learning methods have
been used for the text categorization problem. Some of the popular
methods include the naive Bayes method (Mladenic, 1998; Rennie
et al., 2003), support vector machines (SVM) (Joachims, 2000), and
maximum entropy classifiers (Nigam et al., 1999), to name a few.
Despite naive Bayes classifier’s successful applications to text
document categorization problems, the feature selection using
the naive Bayes classifier has been given little attention.

The naive Bayes classifier has been successful despite its crude
class conditional independence assumption. Obviously, most real
datasets violate this assumption. Due to the naive assumption,

the naive Bayes often leads to the poor posterior probability. Webb
and Pazzani (1998) and Bennett (2000) studied to get the better
posteriors to accommodate the violation of the assumption. The
feature independence assumption related to the naive Bayes has
been studied in conjunction with the naive Bayes classification
performance (Domingos and Pazzani, 1996; Rish, 2001). Many
researchers, however, tried to relax this crude assumption in the
hope of getting better classification accuracy. However, it seems
that there is no greater advance in this direction. Friedman et al.
(1997) compared the Bayesian classifier with the Bayesian network
which supposedly less violates the independence assumption, and
found the latter did not give significant improvement. More survey
on this issue can be found in Domingos et al.’s study (Domingos
and Pazzani, 1997).

Despite the naive assumption of the naive Bayes, its success has
not been well explained or understood until recently. Domingos
and Pazzani (1997), Domingos and Pazzani (1996), and Friedman
(1997) have investigated this issue recently. Their findings are
essentially the distinction between probability estimation and
classification performance. Their claims are even stronger to say
that detecting and relaxing this assumption is not necessarily the
best way to improve performance. Keeping this in mind, we have
developed the class–dependent–feature–weighting approach as a
new feature ranking method using naive Bayes (CDFW–NB). We
have shown its application to text document datasets and protein
sequence dataset. In the following sections, we introduce naive
Bayes classifier, text categorization, feature selection, our proposed
feature ranking method, and its experimental results.

0167-8655/$ - see front matter � 2008 Published by Elsevier B.V.
doi:10.1016/j.patrec.2008.11.013

* Corresponding author. Tel.: +1 732 445 4858; fax: +1 732 445 5472.
E-mail address: mjeong@rci.rutgers.edu (M.K. Jeong).

Pattern Recognition Letters 30 (2009) 477–485

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec

mailto:mjeong@rci.rutgers.edu
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


2. Naive Bayes classifier

The Bayesian method is one of the most extensively used ma-
chine learning methods (Mitchel, 1997). Among them, the naive
Bayes classifier is popular in text document classification. Its suc-
cessful applications to text document datasets have been shown
in many research articles (Joachims, 1997; McCallum and Kamal
Nigam, 1998; Mitchel, 1997; Rennie, 2001). The popularity of the
naive Bayes classifier in text classification problems is due to its
simplicity such as a linear time complexity, and no parameters to
be adjusted.

We introduce the terminology which we will use. We will de-
note a feature (input) vector by the symbol X and the ith compo-
nent of X is written as Xi. A particular observed instance vector is
denoted as x and the ith component of x is denoted as xi. Class label
variable is denoted as Y and a particular value of Y is written as y.
We will use w to represent the word vector corresponding to the
feature vector. The ith component of w is denoted as wi and wi is
the word corresponding to the ith feature. Hence, Xi is a random
variable denoting the number of occurrences of the word wi. We
will simplify the notation as follows:

P Y ¼ yjX ¼ xð Þ ¼ P Y ¼ yjðX1; . . . ;XdÞ ¼ ðx1; . . . ; xdÞð Þ
¼ P yjx1; . . . ; xdð Þ ¼ P yjxð Þ:

PðwijyÞ is the probability that a randomly drawn word from a doc-
ument in class y will be the word wi. Now let us begin with the
Bayes formula, which is fundamental theorem underlying our fea-
ture ranking. Bayes theorem:

P yjxð Þ ¼ PðxjyÞPðyÞ
PðxÞ :

We take an example of an application of the Bayes theorem to a
classification problem. Suppose we have a two category (Y ¼ þ1
or �1) classification problem. We can do the classification using
the Bayes theorem. Given a test instance x, we compute

Pðþ1jxÞ ¼ Pðxj þ 1ÞPðþ1Þ
PðxÞ ;

Pð�1jxÞ ¼ Pðxj � 1ÞPð�1Þ
PðxÞ :

Then we assign x as +1 class if Pðþ1jxÞ > Pð�1jxÞ; otherwise�1. The
probability PðyjxÞ is called a posteriori probability (or posterior) of y
and PðxjyÞ is called the likelihood of y with respect to x. The naive
Bayes classifier tries to assign a class label which maximizes a pos-
teriori probability (MAP) for a given test instance. That is why this
classifier is often called the MAP naive Bayes classifier. We turn to
how to compute a posteriori probability of y, given an instance x.
Using the Bayes theorem,

PðyjxÞ ¼ Pðyjðx1; x2 � � � xdÞÞ ¼
Pððx1; x2 � � � xdÞjyÞ � PðyÞ

Pðx1; x2 � � � xdÞ
ð1Þ

Since we only want to compare the posterior probabilities for differ-
ent y’s, and the denominator is common for different y’s, we can
simply ignore the denominator and compute only the numerator
in (1). In the numerator, PðyÞ, called the prior probability, can be
computed by simply counting the number of instances whose class
labels are y, and the fraction of this number over the total number of
training instances is PðyÞ. But computing Pððx1; x2 � � � xdÞjyÞ by the
same fashion is not feasible unless the data are big enough (Mitchel,
1997). The naive Bayes approach tries to get around this problem by
a simplifying assumption regarding the relationship between fea-
tures (Han and Kamber, 2001; Mitchel, 1997; Tan et al., 2005; Sivia,
1996). The naive Bayes approach thus introduces the class condi-
tional independence assumption between the features. Hence, the
numerator becomes

P ðx1; x2; � � � ; xdÞjyð Þ � PðyÞ ¼
Yd

i¼1
PðxijyÞ � PðyÞ ð2Þ

In summary, the naive Bayes approach classifies an instance x as c
where c ¼ argmaxy

Qd
i¼1PðxijyÞ � PðyÞ.

We will explain how to estimate the class conditional probabil-
ities. We apply the naive Bayes approach to text data. When it is
applied particularly to the text data, the probability PðxijyÞ,
describing the probability that the word (feature) wi occurs xi

times, provided that x belongs to class y, is estimated (Mitchel,
1997)

P xijyð Þ ¼ a � pþ Ny
i

aþ Ny

� �xi

: ð3Þ

where a is the equivalent sample size parameter, p is the prior prob-
ability, Ny is the total number of words in all documents in class y,
counting duplicate words multiple times, and Ny

i is the number of
times the word wi occurs in all documents in class y. Now we con-
sider a binary classification problem using the naive Bayes. That is, Y
is either +1 or �1. It was shown that the binary naive Bayes classi-
fier is a linear classifier (Brank et al., 2002; Chakrabarti et al., 2003;
Ng and Jordan, 2001; Rennie, 2001). The naive Bayes classifies x as
+1 if Pðþ1jxÞ > Pð�1jxÞ, and otherwise �1. In our experiment, we
have chosen the a � p ¼ 1 where a = total number of features (un-
ique words) in the training samples.

3. Text datasets and preprocessing

We will show how the text document can be represented as a
dataset suitable for supervised learning. For the document data to
be available for a supervised learning such as the naive Bayes or
SVM, the document is first converted into a vector space notation
(also called ‘‘bag-of-words”). For a more compact dataset without
any information loss, stop-words are removed. Such stop-words
are ‘‘then,” ‘‘we,” ‘‘are,” and so forth. Again, different forms of the
same word root are processed by the stemmer program. The stem-
mer program converts each word to its root form. We used a stop-
words list which contains 571 such words, which is available from
the Internet (http://www.unine.ch/Info/clef/). For the stemmer pro-
gram, we used the Porter’s stemming algorithm. The Java version of
the algorithm is publicly available (http://www.tartarus.org/~mar-
tin/ PorterStemmer). The resulting matrix converted from the
documents is very high-dimensional and sparse.

For our preliminary experiment, we have collected three differ-
ent text document datasets: textCL, textAB, and textCD. All three
datasets were generated from PubMed (http://www.pubmed.org).
By entering the keywords ‘‘acute chronic leukemia,” we collected
30 abstracts and by entering ‘‘colon cancer” 30 as well. This dataset
is called textCL. For the textAB, two sets of keywords are ‘‘func-
tional genomics OR gene expression” and ‘‘structural genomics
OR proteomics.” For the textCD, the keywords are ‘‘HIV infection”
and ‘‘cancer tumor.”

After collecting the documents, each document was converted
into a so-called ‘‘bag-of-words” representation. The conversion
steps into a bag-of-words representation are shown as follows:

3.1. Steps for bag-of-words representation of text

1. Identify all the words in the 60 documents and make a list of
words.

2. Remove stop-words such as ‘‘a,” ‘‘the,” ‘‘and,” ‘‘then,” and so
forth from the list.

3. Apply the stemming algorithm to each word in the list. The
stemming leaves out the root form of the words. For example,
‘‘computer,” ‘‘computing,” ‘‘computation,” and ‘‘computes” all
have the same comput root.

478 E. Youn, M.K. Jeong / Pattern Recognition Letters 30 (2009) 477–485

http://www.unine.ch/Info/clef/
http://www.tartarus.org/~martin/
http://www.tartarus.org/~martin/
http://www.pubmed.org


Download English Version:

https://daneshyari.com/en/article/534682

Download Persian Version:

https://daneshyari.com/article/534682

Daneshyari.com

https://daneshyari.com/en/article/534682
https://daneshyari.com/article/534682
https://daneshyari.com

