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a b s t r a c t

Two new shape measures for quantifying the degree of convexity are described. When applied to assess-
ment of skin lesions they are shown to be an effective indicator of malignancy, outperforming Lee et al’s.
OII scale–space based irregularity measure. In addition, the new measures were applied to the classifica-
tion of mammographic masses and lung field boundaries and were shown to perform well relative to a
large set of common shape measures that appear in the literature such as moments, compactness, sym-
metry, etc.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

In image-based computer-aided diagnosis of suspected pathol-
ogies, classification is commonly determined by their colour, den-
sity, texture, morphology, etc. This paper focuses on the last
characteristic, namely outline shape. Ideally, a shape measure
should be non-parametric (i.e. free from tuning parameters), sim-
ple and efficient to implement and compute, robust, and invariant
to transformations such as rotation, translation, and scaling. The
starting point for the work described here was the paper by Lee
et al. (2003) on developing a measure of irregularity which they
applied to skin lesions in order to differentiate benign melanocytic
nevi from malignant melanomas. They worked with an extensive
set of 40 lesion borders with extensive ground-truth. each of which
was assessed by fourteen dermatologists on a four point scale.
Fig. 1 shows the skin lesion data as originally presented in (Lee
et al., 2003), but reordered according to each lesion’s mean
ground-truth score. While Lee et al. demonstrated that irregularity
was a reasonable indicator of malignancy, examination of Fig. 1
also suggests that convexity is a strong factor.

Computing Lee et al.’s. irregularity measure (OII) requires
indentations and protrusions to be localised, which is a fairly in-
volved process. It is a curvature scale–space filtering approach,
and therefore smooths the boundary at multiple scales, identifying
zeros and extrema of curvature at each scale (the latter an exten-
sion of the standard curvature scale–space). These points are

tracked and connected over scale. Two separate collections of hier-
archical data structures of indentation segments and protrusion
segments are then generated in which the nesting of multiple fine
scale structures within coarser scale segments is described. Since
the smoothing process reduces the curvature values a threshold
is required to identify and eliminate flat sections, which effectively
provides the stopping condition for defining the roots of the seg-
ment trees. For each of the indentation/protrusion segments the
area which is filled/removed by the smoothing process is deter-
mined. Either the maximum or the sum of these normalised areas
is used as the irregularity measure.

In contrast, there are several standard convexity measures in
the literature that are more straightforward, in particular two
based on the convex hull of the boundary polygon P. Either the ra-
tio of areas or perimeters can be used; we will denote the measures
by CA ¼ areaðPÞ=areaðCHðPÞÞ and CL ¼ perimeterðCHðPÞÞ=
perimeterðPÞ, where CHðPÞ is the convex hull of P. Following on
from this, we propose two new convexity measures in this paper:
The first based on convexification: CF

A, CFT
A and the second on con-

tained lines CF . These measures are then evaluated as indicators
of lesion malignancy alongside a large set of other shape measures
from the literature as well on two other classification tasks involv-
ing mammographic masses and lung field boundaries.

2. Measuring convexity by convexification

In this section we describe a novel method for measuring con-
vexity which has as its genesis a polygonal convexification process
arising from a problem set by Erdös (1935). Given a simple
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(non-intersecting) polygon, let its concavities (‘‘pockets”) be simul-
taneously reflected about their corresponding edges in the convex
hull (their ‘‘lids”) – this is the flip operation. Does repeating this
process converge in a finite number of steps to a convex polygon?
First, it was shown that to avoid self-intersection the pockets
should only be flipped one at a time. Second, that only a finite
number of flips are required for convexification, but that the num-
ber of flips required is not bounded by any function of n, the num-
ber of vertices. This led to a modification in which the pocket is
flipped and also has the order of its vertices reversed (a flipturn)
– whereas flips preserve the order of edges around the polygon,
flipturns preserve their slopes. In contrast to flips, Aichholzer
et al. (2002) show that any simple polygon can be convexified by
at most n2 � 4nþ 1 flipturns. More historical details are given by
Toussaint (1999).

The basic steps of convexification are straightforward as illus-
trated in Fig. 2. The initial polygon is shown in Fig. 2a. The pocket
is drawn in bold, and its lid as the dashed line. The results of apply-
ing a reflection of the pocket about the lid (i.e. a flip) is shown in
Fig. 2b. When the order of the vertices is also reversed this is equiv-
alent to rotating the pocket 180� about the midpoint of its lid, and
produces a flipturn, see Fig. 2c.

It is possible for special situations to occur in which the lid is a
proper subset of a convex hull edge, which extends beyond the lid,
as illustrated in Fig. 3a (the complete edge of the convex hull is
shown by bold dashes). The standard flipturn rotates the pocket
180� about the midpoint of the lid (Fig. 3c). Alternatively, the ex-
tended flipturn (Aichholzer et al., 2002) treats the complete convex
hull edge as an extended lid; rotation of the pocket 180� about the
midpoint of this lead results in the polygon shown in Fig. 3d. In this
paper we have used extended flipturns.

A simple implementation in which the convex hull is recom-
puted from scratch at each iteration would result in an algorithm

that is linear per iteration. If an appropriate data structure for on-
line updates is used each iteration be performed in Oðlog4nÞ amor-
tised time (Aichholzer et al., 2002). However, if only the final
convexified polygon using flipturns is required then this can be
computed more efficiently. Flipturns do not change orientations
or lengths of edges, so that the edges of the original polygon can
be sorted by orientation in Oðn log nÞ time and then reconnected
to form the convexified polygon.

Whereas flips and flipturns have previously only been consid-
ered as an interesting computational geometry problem, in this pa-
per we use the convexified polygon to measure convexity in the
same way as the more traditional convex hull based method,
namely the ratio of the areas of the original and convexified poly-
gons (denoted CF

A and CFT
A when using flips or flipturns, respec-

tively). An alternative would be to use the number of flips or
flipturns as an indication of convexity – however this would dis-
card information relating to the size of the flips or flipturns. Since
there are many possible different sequences of flips or flipturns
that will convexify a polygon it is important to ensure that the re-
sult is stable. Aichholzer et al. (2002) show that using flipturns all
the sequences result in the same final polygon, but there is no such
guarantee using flips. To ensure repeatability for similar shapes we
standardise the order of flipping and flipturning. At each iteration
the maximum deviation between each pocket and its lid is deter-
mined, and the pocket with the largest deviation is selected for
flipping.

The convex hull based measurements are very asymmetric in
that they are far less sensitive to intrusions than protrusions. This
is demonstrated on a circle which has spikes added or subtracted
from it; see Fig. 4. The solid and dotted lines in the graphs refer
to the circles with protrusions and intrusions, respectively. It can
be seen that convexity based on the area of the convexified poly-
gon behaves in a close to symmetric manner. The reason is that
any intrusions are quickly converted into protrusions by the con-
vexification process.

Another comparison between the measures is shown in Fig. 5.
The rectangle in the left-hand column has the notch in different
locations. This shift has no effect on the values returned by CA

and CL, or by convexification using flipturning. However, when just
flips are applied the different notch positions result in different
convexified polygons. CF

A is maximal when the notch is furthest
from the centre of the rectangle. Since the maximum inscribed
convex polygon in the latter rectangle is larger than the maximum
inscribed convex polygons in the other notched rectangles then it
could be argued that such a convexity measure is appropriate.

3. Measuring convexity by contained lines

There are many definitions of (perfect) convexity (Cristescu and
Lupsa, 2000) and many of these can be employed to generate mea-
sures of (approximate) convexity (Martin and Rosin, 2004). The
one used here is based on the set of all straight line segments L

formed from all pairs of points lying within a polygon P. Polygon
P is considered to be convex if and only if all the lines in L are
completely contained within P. Given the basic definition it is pos-
sible to adapt it in many ways to create more specific or general
concepts of convexity. For instance, if the straight lines are digital
(i.e. they are sampled on a grid) then digital convexity can be
determined (Kim and Rosenfeld, 1982). Another example would
be to restrict the lines to lie in a single pre-specified orientation,
the so called O-convex set (Fink and Wood, 1996).

In this paper the requirement for L to be completely contained
in P will be relaxed. Instead it will be sufficient for a sufficiently
large fraction of each line in L to be contained. The motivation
is to make the approach less sensitive to minor fluctuations of

a b c
Fig. 2. One iteration of the convexification process: (a) input polygon; (b) after a
flip; (c) after a flipturn.

Fig. 1. The full set of 40 skin lesion outlines from Lee et al. (2003) reordered
according to the mean ground-truth score calculated from the individual scores
provided by 14 dermatologists (drawn rescaled). A score of 1 corresponds to the
healthiest lesion while 4 indicated the most severely malignant.

P.L. Rosin / Pattern Recognition Letters 30 (2009) 570–578 571



Download	English	Version:

https://daneshyari.com/en/article/534692

Download	Persian	Version:

https://daneshyari.com/article/534692

Daneshyari.com

https://daneshyari.com/en/article/534692
https://daneshyari.com/article/534692
https://daneshyari.com/

