Accepted Manuscript

Title: High photoactive TiO₂/SnO₂ nanocomposites prepared by laser pyrolysis

Author: Monica Scarisoreanu Claudiu Fleaca Ion Morjan Ana-Maria Niculescu Catalin Luculescu Elena Dutu Alina Ilie Iuliana Morjan Lavinia Gavrila Florescu Eugeniu Vasile Carmen Ioana Fort

PII: S0169-4332(16)32832-X

DOI: http://dx.doi.org/doi:10.1016/j.apsusc.2016.12.122

Reference: APSUSC 34669

To appear in: APSUSC

Received date: 30-6-2016 Revised date: 13-12-2016 Accepted date: 14-12-2016

Please cite this article as: Monica Scarisoreanu, Claudiu Fleaca, Ion Morjan, Ana-Maria Niculescu, Catalin Luculescu, Elena Dutu, Alina Ilie, Iuliana Morjan, Lavinia Gavrila Florescu, Eugeniu Vasile, Carmen Ioana Fort, High photoactive TiO2/SnO2 nanocomposites prepared by laser pyrolysis, Applied Surface Science http://dx.doi.org/10.1016/j.apsusc.2016.12.122

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

High photoactive TiO₂/SnO₂ nanocomposites prepared by laser pyrolysis

Monica Scarisoreanu¹, Claudiu Fleaca^{1,*}, Ion Morjan¹, Ana-Maria Niculescu¹, Catalin Luculescu¹, Elena Dutu¹, Alina Ilie^{1,2}, Iuliana Morjan¹, Lavinia Gavrila Florescu¹, Eugeniu Vasile³, Carmen Ioana Fort⁴

- ¹ National Institute for Lasers, Plasma and Radiation Physics, PO Box MG-36, 077125, Magurele-Bucharest, Romania;
- ² University of Bucharest, Faculty of Physics, 405 Atomistilor Str, Magurele-Bucharest, 077125, Romania;
- ³ "Politehnica" University of Bucharest, Faculty of Applied Chemistry and Materials Sciences, 1-7 Gh. Polizu Str, Bucharest, Romania;
- ⁴ "Babes-Bolyai" University, Faculty of Chemistry and Chemical Engineering, Electrochemical Research Laboratory, 11 Arany Janos Str., Cluj-Napoca, 400028, Romania;

*Corresponding author Tel.: +4021-4574489; fax: +4021-4574243 E-mail address: claudiufleaca@yahoo.com

Highlights

- TiO₂/SnO₂ nanocomposites were synthesized by the single step laser pyrolysis
- TiCl₄, SnCl₄ and O₂ from air were the precursors and C₂H₄ was the sensitizer
- Different Sn (1.1-4.8 at.%) concentrations were found
- TiO₂/SnO₂ samples have a lower bandgap energy (Eg= 2.9 eV) and better UV photoactivity as compared with the P25 Degussa

Abstract.

TiO₂/SnO₂ nanocomposites have been prepared by laser pyrolysis of volatile TiCl₄ and SnCl₄ precursors introduced together or separately in the reaction zone in the presence of air as oxidant and ethylene as sensitizer. Prior to the obtaining of TiO₂/SnO₂

Download English Version:

https://daneshyari.com/en/article/5346980

Download Persian Version:

https://daneshyari.com/article/5346980

<u>Daneshyari.com</u>