Accepted Manuscript

Title: Sub-nanometer resolution XPS depth profiling: Sensing of atoms

Authors: Marek Szklarczyk, Karol Macak, Adam J. Roberts, Kazuhiro Takahashi, Simon Hutton, Rafał Głaszczka, Christopher Blomfield

PII: S0169-4332(17)30595-0

DOI: http://dx.doi.org/doi:10.1016/j.apsusc.2017.02.222

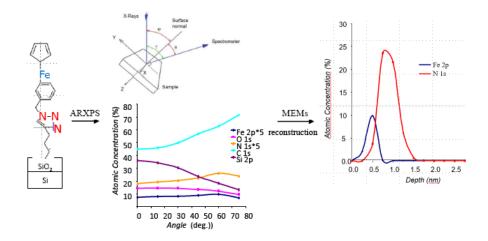
Reference: APSUSC 35331

To appear in: APSUSC

Received date: 19-10-2016 Revised date: 1-2-2017 Accepted date: 25-2-2017

Please cite this article as: Marek Szklarczyk, Karol Macak, Adam J.Roberts, Kazuhiro Takahashi, Simon Hutton, Rafał Głaszczka, Christopher Blomfield, Subnanometer resolution XPS depth profiling: Sensing of atoms, Applied Surface Sciencehttp://dx.doi.org/10.1016/j.apsusc.2017.02.222

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


ACCEPTED MANUSCRIPT

Sub-nanometer resolution XPS depth profiling: Sensing of atoms

Marek Szklarczyk^{a,b*}, Karol Macak^c, Adam, J. Roberts^c, Kazuhiro Takahashi^d, Simon Hutton^c, Rafał Głaszczka^b, Christopher Blomfield^c

- ^a Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
- ^b Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin, Poland
- ^c Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP, UK
- ^d Kratos XPS Section, Shimadzu Corp., 380-1 Horiyamashita, Hadano, Kanagawa 259-1304, Japan

Graphical abstarct

Highlights

- Angle resolved photoelectron depth profiling of nano thin films.
- Sensing atomic position in SAM films.
- Detection of direction position of adsorbed molecules.

Abstract

The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results.

In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the

^{*}Person to whom correspondence should be addressed: szklarcz@chem.uw.edu.pl

Download English Version:

https://daneshyari.com/en/article/5347132

Download Persian Version:

https://daneshyari.com/article/5347132

<u>Daneshyari.com</u>